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Abstract

Background: Preterm birth is a significant clinical problem and an enormous burden on society, affecting one in
eight pregnant women and their newborns. Despite decades of research, the molecular mechanism underlying its
pathogenesis remains unclear. Many studies have shown that preterm birth is associated with health risks across
the later life course. The “fetal origins” hypothesis postulates that adverse intrauterine exposures are associated with
later disease susceptibility. Our recent studies have focused on the placental epigenome at term. We extended
these studies to genome-wide placental DNA methylation across a wide range of gestational ages. We applied
methylation dependent immunoprecipitation/DNA sequencing (MeDIP-seq) to 9 placentas with gestational age
from 25 weeks to term to identify differentially methylated regions (DMRs).

Results: Enrichment analysis revealed 427 DMRs with nominally significant differences in methylation between
preterm and term placentas (p < 0.01) and 21 statistically significant DMRs after multiple comparison correction
(FDR p < 0.05), of which 62% were hypo-methylated in preterm placentas vs term placentas. The majority of DMRs
were in distal intergenic regions and introns. Significantly enriched pathways identified by Ingenuity Pathway
Analysis (IPA) included Citrulline-Nitric Oxide Cycle and Fcy Receptor Mediated Phagocytosis in macrophages. The
DMR gene set overlapped placental gene expression data, genes and pathways associated evolutionarily with
preterm birth.

Conclusion: These studies form the basis for future studies on the epigenetics of preterm birth, “fetal
programming” and the impact of environment exposures on this important clinical challenge.
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Background
Despite decades of research, the underlying cause of
preterm birth remains enigmatic. It is a leading cause
of newborn morbidity, hospitalization, and develop-
mental delays [1]. In addition, preterm birth is associ-
ated with health risks across the later life course of
the newborn, including cardiovascular disease, meta-
bolic syndromes, psychiatric conditions, obesity and
cognitive disabilities [1, 2]. The “fetal origins” or De-
velopmental Origins and Health and Disease
(DOHaD) hypothesis, developed from a series of epi-
demiologic observations, demonstrated that measures
of birth size were associated with long-term chronic

disease risk [3]. Numerous investigations have shown
that antenatal maternal environmental factors, includ-
ing diet, xenobiotic exposure, stress, and lifestyle fac-
tors can alter fetal growth and result in permanent
biological and physiologic changes of the offspring
[3]. Environmental factors like race, diet, smoking, so-
cioeconomic status may also increase the risk of
spontaneous preterm birth [1, 4, 5] and are associated
with epigenetic alterations [6].
DNA methylation is the most well studied epigenetic

mechanism of gene regulation, often associated with
transcriptional silencing of downstream gene(s). The
presence of the methyl group(s) alone is not sufficient
for transcriptional silencing, but instead alters recruit-
ment of component proteins related to gene repression
and results in a silenced chromatin conformation. DNA
methylation is an essential epigenetic mechanism in fetal
development [7].
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The placenta facilitates the exchange of gas, nutri-
ents, and waste between the mother and the fetus,
and modulates effects on the fetus from the mother’s
immune system, thus playing an essential role in fetal
growth and development. It is also essential in under-
standing the long-term effects of in-utero develop-
ment on post-natal disease. The placenta undergoes
many changes throughout gestation and the mecha-
nisms behind these changes need to be better under-
stood. In an attempt to do so, several studies have
examined genome wide expression differences in pla-
centas at different time points during gestation, com-
paring first, second and third trimester placental
methylation [8, 9]. Changes in expression with in-
creasing gestational age were found in common be-
tween the studies. Others are attempting to better
understand placental development and fetal program-
ming through the study of epigenetic factors, includ-
ing DNA methylation of placental tissue and
umbilical cord blood. Studies of umbilical cord blood
from preterm and term pregnancies have releaved
differences in methylation associated with gestational
age [10, 11]. Novakovic et al. have studied genome
scale placental promoter methylation from the three
trimesters of pregnancy, revealing a progressive in-
crease in methylation from first to third trimester.
They also identified increased inter-individual vari-
ability in third trimester samples [12]. Other studies
have alsofound varied methylation differences associ-
ated with gestational age comparing placentas in the
third trimester, as well as a global increase in methy-
lation with gestational age (28–40 weeks) [13–15]. In
addition, the placenta has the highest overall vari-
ability in DNA methylation when compared to other
tissues [16]. These studies all support the emerging
paradigm that the placenta is an active mediator of
fetal well-being and neurodevelopmental outcome
and can serve as a blueprint for intrauterine life
[17]. This is an exploratory study seeking to investi-
gate genome wide placental DNA methylation across
a wide range of preterm gestational ages and com-
pared it to that of placenta from term deliveries. In
order to generate genome-wide information, we
employed immunoprecipitation of methylated DNA
followed by whole-genome sequencing, so called
MeDIP-seq [18]. We hypothesize that using this ap-
proach, we would be able to identify potential re-
gions of interest and pathways involved in and
influenced by changes in placental methylation asso-
ciated with preterm birth and gestational age. Our
objectives were to demonstrate the feasibility of this
approach and to generate placental methylation data
that would be useful to our own studies and to
those of others.

Results
Placental sample and patient characteristics
Placental samples of villous parenchyma were taken
from four quadrants between the chorionic and basal
plate. Table 1 shows summary clinical characteristics of
the cohort of placental samples and the associated pa-
tients. Placental samples were obtained from six preterm
pregnancies (gestational age 25–34 weeks) and three
term pregnancies (37–41 weeks). The average birth
weights of the fetuses were 1541 g vs 3033 g and the
average gestational ages were 30 weeks vs 39 weeks, re-
spectively. We also recorded maternal pregnancy factors
including BMI, but the variance was large and thus the
means were not significantly different between the two
groups. All fetuses had birth weights that were appropri-
ate for gestational age. Among placentas from the pre-
term pregnancies, two of the mothers were diagnosed
with some degree of hypertension. There was no history
of drug use. One mother, who delivered preterm, admit-
ted to smoking during pregnancy. Detailed clinical data
for each sample can be found in Additional file 1.

Differentially methylated regions (DMR) associated with
preterm birth
We used the bioinformatics tools DiffBind and DESeq2
to test for association with preterm birth using methyla-
tion peak counts as the outcome and PTB status as the
independent variable. The raw zipped fastq files and the
peak count matrix have all be uploaded to GEO and can
be found with the following accession number:
GSE120458 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE120458). We found 427 peaks with nomin-
ally significant differences in methylation between cases
and controls, (p < 0.01) [see Additional file 2]. Following
FDR correction, there were 21 DMRs that associate with
PTB using a filter for low mean counts to maximize the
number of FDR significant peaks at an adjusted p < 0.05.
These 21 significant DMRs and their annotations are
shown in Table 2. The peak heights (read counts) of the
21 DMRs associated with PTB are also visualized in a
heat map in which unsupervised clustering was used to
group the patients (columns) (Fig. 1). The three term pa-
tients (Samples 2, 8 and 9) cluster together and are dis-
tinct from the 6 preterm samples. Among the 21 DMRs
associated with PTB, 62% were hypo-methylated in pre-
term placentas compared to term placentas. Similar per-
centages were found for the uncorrected significant
DMRs. We next used the R Bioconductor package
CHipSeeker [19] to annotate the DMRs associated with
PTB with their nearest gene. The 427 regions are associ-
ated to 342 unique genes. The highest percentage of
DMRs map to distal intergenic regions (57.38%) followed
by introns, other than the first intron and promoter re-
gions. A larger percentage of DMRs were located in
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proximal promoter regions (< 1 kb upstream) compared
to more distal regions (> 2-3 kb followed by 1-2 kb up-
stream) (see Additional file 3).
Enrichment scores for a variety of genomic features

for the hyper-methylated and the hypo-methylated
DMRs independently are shown in Fig. 2. The hypo-
methylated DMRs were enriched for CpG Islands and
the hyper-methylated regions were enriched for CpG
shores and shelves.

Differentially methylated regions (DMR) are associated
with gestational age
We used the same pipeline to test for association of
DNA methylation with preterm birth using methylation
peak counts as the outcome and gestational age in weeks

as a continuous, independent variable. We found 667
peaks with nominally significant differences in methyla-
tion between cases and controls, (p < 0.01) [see Add-
itional file 4]. Following FDR correction, we found 67
significant DMRs that associate with gestational age,
using a filter for low mean counts to maximize the num-
ber of FDR significant peaks at an adjusted p < 0.05.
Table 3 contains these 67 DMR and their annotations.
The percentages of the DMRs that map to the genomic
annotation categories are almost identical to the com-
parison between preterm birth and term.
In an attempt to distinguish DMRs that are solely a re-

sult of gestational timing from those which could be ex-
plained by experience dependent alterations, we looked
for overlap and differences between the continuous ana-
lysis on gestation age and the categorical analysis on
PTB status. Ten out of the 21 DMRs show methylation
changes that are associated to both PTB and gestational
age. The remaining 11 DMRs may reflect changes due to
experience dependent alterations. Additionally, 215
DMRs were found significant in both the dichotomous
and continuous models (p-value <.01), mapping to 177
unique genes.

Comparative gene set analysis
To enhance discovery and interpretation of these find-
ings, we compared our DMRs and their nearest anno-
tated genes with previously established gene sets that

Table 1 Summary of Clinical characteristics of sampled patients
Clinical Data Cases (n = 6) Controls (n = 3) P-value

Gestational Age (avg weeks) 30 39 0.001

Maternal BMI (avg kg) 29.5 40.7 0.32

Birth Weight (avg g) 1541 3033 0.001

Drug Use (number of samples) 0 0 –

Smoking (number of samples) 1 0 –

Preeclampsia (number of samples) 2 0 –

Male Sex of Infant (number of
samples)

3 2 –

Race/Ethnicity (number of
samples)

White (5) Other
(1)

White (2) Hispanic
(1)

–

Table 2 Annotated DMR’s Associated with Preterm Birth
DMR Location DMR Width baseMean log2 FoldChange padj Annotation Nearest Gene

chr10:1281019–1,282,852 1833 614.6687 −1.39475 0.001099 Intron ADARB2

chr22:29515430–29,517,126 1696 2125.015 −0.7487 0.001099 Intron KREMEN1

chr2:60693762–60,695,701 1939 293.8868 −0.96653 0.003059 Intron BCL11A

chr1:16888159–16,896,002 7843 1691.305 0.664717 0.018052 3′ UTR MIR3675

chr15:22741828–22,744,210 2382 1025.047 −1.02204 0.018052 Exon GOLGA6L1

chr15:32781660–32,783,301 1641 391.2485 −0.56857 0.018052 Distal Intergenic GOLGA8O

chr17:21901995–21,907,966 5971 1435.135 1.262002 0.018052 Promoter (<=1 kb) FLJ36000

chr19:24622360–24,624,613 2253 338.0393 1.234145 0.018052 Distal Intergenic HAVCR1P1

chr19:37783156–37,788,148 4992 786.5645 1.768082 0.018052 Distal Intergenic HKR1

chr2:92280419–92,282,186 1767 1109.498 1.027544 0.018052 Distal Intergenic ACTR3BP2

chr20:20317316–20,318,796 1480 713.2818 −0.66627 0.018052 Intron INSM1

chr9:73946028–73,947,394 1366 290.2041 −0.64868 0.024388 Intron TRPM3

chr18:15404549–15,410,901 6352 972.9929 1.687868 0.02956 Distal Intergenic LOC644669

chr2:92289472–92,292,822 3350 4738.836 1.060257 0.032703 Distal Intergenic ACTR3BP2

chr1:16932177–16,936,537 4360 710.057 0.489202 0.048809 5′ UTR NBPF1

chr2:90371419–90,374,495 3076 1492.051 1.021356 0.048809 Intron MIR4436A

chr2:90374619–90,378,951 4332 2470.989 1.010006 0.048809 Intron MIR4436A

chr2:91595932–91,600,986 5054 2660.109 0.993924 0.048809 Distal Intergenic LOC654342

chr5:180899895–180,903,257 3362 290.8312 0.778464 0.048809 Distal Intergenic OR4F16

chr7:158998336–159,000,338 2002 314.5755 −0.72705 0.048809 Distal Intergenic VIPR2

chr8:43792848–43,795,213 2365 1959.954 1.112517 0.048809 Distal Intergenic POTEA
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have been shown to be associated with preterm birth
and pregnancy. We compared the genes nearest to the
DMRs associated with PTB and gestational age to tran-
scription profiles from preterm and term placenta sam-
ples [20]. The results, shown in Tables 4 and 5, are for

genes that were upregulated and downregulated, respect-
ively. This table also shows the genes nearest DMRs that
are contained within a set of genes that are in networks
and pathways related to preterm birth, outlined in the
Database for Preterm Birth (dbPTB) [21]. Lastly, we

Fig. 1 Peak Intensity heat map: A heat map of the read counts of the 21 DMRs for each of the 9 samples. Samples 2, 8 and 9 are the term
placentae, and the remaining is preterm. Unsupervised clustering was used to order the columns. Darker blue squares represent more reads/
higher methylation whereas lighter green squares represent less reads/lower methylation

Fig. 2 Enrichment of genomic features amongst differentially methylated regions: Genomic feature enrichment for hyper-methylated (left) and
hypo-methylated (right) DMRs. Introns, Exons and CpG islands were obtained from UCSC Genome Browser and shores and shelves are defined as
2 kb and 4 kb up and down stream of the islands. Promoters and Enhancers were obtained from Roadmap Epigenome Placental cell line
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Table 3 Annotated DMR’s Associated with Gestational Age

DMR Location DMR Width baseMean log2FoldChange padj Annotation Nearest Gene

chr11:1069274–1,070,940 1666 275.32 −0.077895692 0.000669 Distal Intergenic MUC2

chr7:158509261–158,511,170 1909 785.4202 −0.055129353 0.001379 Distal Intergenic NCAPG2

chr8:143302532–143,305,491 2959 708.6988 −0.057666861 0.001379 Intron LINC00051

chr11:51578780–51,581,392 2612 5862.829 0.12089555 0.007632 Distal Intergenic OR4C46

chr15:22741828–22,744,210 2382 1025.047 −0.091557436 0.007632 Exon GOLGA6L1

chr17:21901995–21,907,966 5971 1435.135 0.114589697 0.008451 Promoter (<=1 kb) FLJ36000

chr11:51587551–51,593,541 5990 6613.759 0.114797282 0.012877 Distal Intergenic OR4C46

chr10:115540476–115,542,108 1632 369.5293 −0.058238042 0.015459 Promoter (2-3 kb) MIR4483

chr4:9875–10,674 799 300.733 −0.066430834 0.020835 Distal Intergenic ZNF595

chr5:49415136–49,417,649 2513 629.6273 0.098693759 0.020835 Distal Intergenic EMB

chr15:56071747–56,073,363 1616 280.2815 −0.044766281 0.028409 Distal Intergenic PRTG

chrY:59027085–59,033,404 6319 757.9891 0.085296918 0.028937 Distal Intergenic SPRY3

chr10:127579482–127,584,720 5238 732.2817 0.072848407 0.032657 Promoter (<=1 kb) DHX32

chr10:134878560–134,880,844 2284 289.1369 −0.080610086 0.032657 Distal Intergenic ADGRA1

chr11:1795935–1,798,177 2242 452.7534 −0.059025405 0.032657 Distal Intergenic MOB2

chr11:51570928–51,573,041 2113 623.7097 0.10472301 0.032657 Distal Intergenic OR4C46

chr11:51581774–51,585,209 3435 3634.642 0.099090126 0.032657 Distal Intergenic OR4C46

chr19:24622360–24,624,613 2253 338.0393 0.100239042 0.032657 Distal Intergenic HAVCR1P1

chr2:60693762–60,695,701 1939 293.8868 −0.074300347 0.032657 Intron BCL11A

chr2:90374619–90,378,951 4332 2470.989 0.08904097 0.032657 Intron MIR4436A

chr2:92280419–92,282,186 1767 1109.498 0.085845619 0.032657 Distal Intergenic ACTR3BP2

chr21:11121793–11,128,301 6508 1510.744 0.043743747 0.032657 Distal Intergenic BAGE

chr5:49413369–49,415,026 1657 555.3467 0.102896519 0.032657 Distal Intergenic EMB

chr6:58775746–58,780,286 4540 59,219.18 0.088992793 0.032657 Distal Intergenic GUSBP4

chr6:132921367–132,922,856 1489 702.8588 −0.077101273 0.032657 Distal Intergenic TAAR3

chr7:155125413–155,128,850 3437 1162.764 −0.038748136 0.032657 Distal Intergenic INSIG1

chr7:155199140–155,201,882 2742 355.5753 −0.077494132 0.032657 Distal Intergenic EN2

chr2:91603906–91,606,341 2435 1002.445 0.094259612 0.033077 Distal Intergenic LOC654342

chr1:16888159–16,896,002 7843 1691.305 0.055571393 0.035079 3′ UTR MIR3675

chr2:91595932–91,600,986 5054 2660.109 0.085847679 0.035079 Distal Intergenic LOC654342

chr5:49428377–49,432,607 4230 1837.6 0.094529868 0.035079 Distal Intergenic EMB

chr5:49434812–49,441,568 6756 3582.595 0.092033374 0.035079 Distal Intergenic EMB

chr8:143093456–143,095,020 1564 434.2594 −0.048625159 0.037056 Distal Intergenic MIR4472–1

chr9:43157894–43,160,792 2898 440.6311 −0.051599615 0.038038 Distal Intergenic LOC642929

chr3:196625149–196,626,329 1180 5459.852 0.091127805 0.03925 Intron SENP5

chr1:2775172–2,776,643 1471 300.3145 −0.049869539 0.043507 Distal Intergenic TTC34

chr1:161411315–161,417,356 6041 980.0181 0.059054185 0.043507 Exon FCGR2A

chr1:227165108–227,167,121 2013 321.0379 −0.05472419 0.043507 Promoter (<=1 kb) ADCK3

chr10:42639382–42,642,799 3417 471.9378 0.053591881 0.043507 Distal Intergenic LOC441666

chr12:117759233–117,761,187 1954 733.3737 −0.051097394 0.043507 Intron NOS1

chr12:131743021–131,745,096 2075 402.1728 −0.04241032 0.043507 Distal Intergenic LINC01257

chr14:104680716–104,682,479 1763 393.9317 −0.039036454 0.043507 Distal Intergenic KIF26A

chr14:106130890–106,133,431 2541 327.5869 −0.050328469 0.043507 Intron ELK2AP

chr18:9876–11,028 1152 869.3626 −0.058790034 0.043507 Distal Intergenic ROCK1P1
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compared the genes nearest our DMRs to a set of genes
that have been previously found by Lynch et al. to be
uniquely expressed in the endometrium of placental
mammals and shown to be important in the evolution of
pregnancy [22]. While the number of DMR associated
genes overlapping each of these preterm birth gene sets
is greater than the number expected by chance, this
comparison was not statistically significant.
Nonetheless, it is of interest that a hyper-methylated

DMR associated with PTB is in nearest proximity to the
TFRC gene (Transferrin Receptor 1), which is associated
with prematurity in placental transcription profiles and

evolutionarily conserved endometrial genes. TFRC is an
essential protein for iron transfer across the placenta and
changes in its expression have been associated with IUGR
and preeclampsia. In addition, a hypo-methylated DMR is
associated with gestation age in the MLB2 (mannose bind-
ing lectin) gene, which overlaps the latter two comparative
gene sets. MLB2 codes for a protein which plays a role in
fetal inflammatory response to infection and injury.

Pathway analysis
Given that PTB is not a monogenic disorder, we were in-
terested in the pathways associated with the genes

Table 3 Annotated DMR’s Associated with Gestational Age (Continued)

DMR Location DMR Width baseMean log2FoldChange padj Annotation Nearest Gene

chr2:90380982–90,382,232 1250 703.058 0.087608099 0.043507 Intron MIR4436A

chr2:90390888–90,393,740 2852 1224.857 0.082639282 0.043507 Intron MIR4436A

chr2:232245135–232,247,014 1879 684.5341 −0.049273959 0.043507 Distal Intergenic B3GNT7

chr2:233878888–233,880,783 1895 458.8731 −0.042533652 0.043507 Promoter (<=1 kb) NGEF

chr21:47233703–47,236,436 2733 660.0114 −0.045879449 0.043507 Intron LOC100129027

chr22:28043663–28,045,838 2175 319.4394 −0.045382128 0.043507 Distal Intergenic MN1

chr3:185842547–185,844,972 2425 338.0063 −0.040820001 0.043507 Distal Intergenic ETV5

chr4:3679282–3,681,125 1843 632.2126 −0.039394589 0.043507 Promoter (<=1 kb) LOC100133461

chr5:171997237–171,998,674 1437 574.0105 −0.040752286 0.043507 Distal Intergenic NEURL1B

chr5:172145042–172,146,642 1600 283.15 −0.039405643 0.043507 Distal Intergenic DUSP1

chr7:35083300–35,086,409 3109 667.0347 −0.063938851 0.043507 Exon DPY19L1

chr8:27426562–27,428,394 1832 618.5586 −0.046453345 0.043507 Distal Intergenic CLU

chrX:148615982–148,617,887 1905 496.8346 −0.071187463 0.043507 Promoter (<=1 kb) IDS

chr14:77322208–77,324,017 1809 358.4726 −0.036853715 0.043857 Exon LRRC74A

chr14:94213175–94,214,970 1795 274.9046 −0.044559973 0.043963 Intron PRIMA1

chr8:143824284–143,827,190 2906 872.6112 −0.056328342 0.043963 Promoter (<=1 kb) SLURP1

chr2:92289472–92,292,822 3350 4738.836 0.085456146 0.04533 Distal Intergenic ACTR3BP2

chr1:15170988–15,172,589 1601 341.8562 −0.043070132 0.045985 Intron KAZN

chr1:22873178–22,875,162 1984 628.9255 −0.048195935 0.045985 Distal Intergenic EPHA8

chr15:32781660–32,783,301 1641 391.2485 −0.044570446 0.045985 Distal Intergenic GOLGA8O

chr2:92294963–92,300,499 5536 4633.964 0.085605878 0.048908 Distal Intergenic ACTR3BP2

chr4:5852906–5,854,271 1365 315.8726 −0.042689188 0.048908 Exon CRMP1

chr7:15223273–15,225,157 1884 555.7869 −0.050035386 0.048908 Distal Intergenic DGKB

Table 4 Comparative Analysis of Nearest Genes to DMRs associated with PTB

Overexpressed in PTB
Placenta [20]

Under expressed in PTB
Placenta [20]

Mammalian Gain of
Function [22]

Mammalian Loss of
Function [22]

dbPTB Curated Gene Set
[21]

TFRC
NBPF10
JAM3
ARHGEF7
DAPK1

GUSBP1
MFSD2A
PSPC1

KREMEN1
TFRC
DPY19L1
C1orf159
K1F14
NEDD4L
C1QTNF3
EDIL3
PSD3
ARPC5L

C15orf27
PRSS33
CAPN13
NPBWR2
MYOM2

ATRNL1
NOS1
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neared to the above DMRs. We reasoned this might pro-
vide insight into the functional context of the PTB asso-
ciated DMRs. We found 9 canonical pathways
significantly enriched in the PTB associated DMRs (−log
p-value > 1.3) The most significant pathways included
Superpathway of Citrulline Metabolism, Citrulline-Nitric
Oxide Cycle, Fc-gamma Receptor Mediated Phagocytosis
in Macrophages and the Urea Cycle. The Citrulline Me-
tabolism pathway and the Citrulline Nitric Oxide Cycle
pathway contain NOS1 (nitric oxide synthase 1) which
has a proximal hyper-methylated DMR associated with
both PTB and gestational age and also in the dbPTB
gene set of networks and pathways related to PTB [21].
IPA also returned the top 25 gene interaction networks.
The top scoring networks contained 25 genes from our
DMR gene set and were related to cell death, organismal
survival and gene expression.
We did additional pathway analysis on the set 177

unique genes nearest the 215 DMRs which were signifi-
cant in both models and on the set of genes nearest the
DMRs only significant in the PTB model. The aforemen-
tioned pathways remain the most significant ones. For
the DMRs which were significant for both models,
Superpathway of Citrulline Metabolism, Citrulline-Nitric
Oxide Cycle, and the Urea Cycle were the top canonical
pathways. For the DMRs only significant in the PTB
model, Fc-gamma Receptor Mediated Phagocytosis in
Macrophages remained in the top list of pathways, in
addition to some new pathways: Integrin signaling, DNA
damage signaling and FAK signaling.

Discussion
We used methylation-dependent immunoprecipitation
followed by high throughput sequencing to generate
non-biased, genome-wide map of DNA methylation in
placenta from a wide range of gestational ages. We in-
vestigated regions for which there was differential

methylation between preterm (< 34 weeks) and term pla-
centas (> 37 weeks), as well as regions for which the dif-
ferences in methylation were associated with the
continuous variable gestational age. Our results demon-
strate significant differences in DNA methylation in pre-
term versus term placenta. Approximately half of the
DMRs associated with preterm birth were not signifi-
cantly associated with changes in gestational age. There
were more hypo-methylated regions in preterm patients
compared to term patients. The highest percentages of
differentially methylated regions mapped to distal inter-
genic regions followed by introns, exons and then pro-
moter regions. Mapping of these significant DMRs to
the nearest genes demonstrated some overlap with pat-
terns of differential gene expression in placentas from
preterm and term patients [20]. There was also overlap
with genes shown to be evolutionarily linked to preterm
birth and to networks and pathways associated with pre-
term birth [21, 22].
Both candidate gene studies and genome-wide studies

of DNA methylation in the placenta have been per-
formed to investigate the mechanism(s) of preterm birth.
One study found a positive association between global
methylation and gestational age but others found little
variation amongst the partially methylated domains
across all three trimesters [11, 14]. Another study of pro-
moter region methylation found overall differences in
methylation between second and third trimester placen-
tas, but not between first and second trimester [12]. Sev-
eral studies examining gestational age and DNA
methylation used umbilical cord blood to gain under-
standing into fetal programming and methylation state
at birth. In one study, among the 39 genes showing dif-
ferential methylation, 29 showed a decrease in methyla-
tion with increase in gestational age while the remainder
showed an increase and no relationship to type of deliv-
ery [11]. Parets et al. studied methylation of cord blood

Table 5 Comparative Analysis of Nearest Genes to DMRs associated with Gestational Age

Overexpressed in PTB
Placenta [20]

Under expressed in PTB
Placenta [20]

Mammalian Gain of
Function [22]

Mammalian Loss of
Function [22]

dbPTB Curated Gene Set
[21]

JAM3 PRKAG2
MFSD2A
PSPC1
BCL2

DPY19L1
TMEM132C
C1orf159
K1F14
AKAP6
ZNF532
CMPK2
SLC8A1
ADCY2
C1QTNF3
KHDRBS3

FERMT1
L1F1A
CAMK2A
KCNQ2
RD3
MBL2
PRSS33
GSG1L
EPHB1
PDE6B
CLVS2
MYOM2

CDC25A
COL1A2
COL5A1
ETV5
F13A1
GC
HS3ST3A1
IL1R2
KATNAL2
LOXHD1
MBL2
MYH9
NOS1
SMAD6
SOX17
BEAN1
KCNN3
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leukocytes from 24 weeks to 41 weeks [10]. Most sites
showed lower degrees of methylation with shorter gesta-
tional age, suggesting that one mechanism regulating the
extent of methylation is gestational timing. We and
others have also found associations with the preterm
birth process itself. The Norwegian Mother and Child
Cohort Study (MoBa) compared cord blood methylation
with birthweight and found both increased and de-
creased patterns of methylation associated with specific
genes [23]. Another study using the Illumina 450 k array
found 1400 variably-methylated regions which correlated
with significant variables in the intrauterine environment
including maternal smoking, maternal depression, ma-
ternal BMI, infant birthweight and gestational age [24].
Thus, while no unifying picture of the association be-
tween gestational age and DNA methylation has been
demonstrated, we believe the mechanisms regulating the
extent and pattern of placental DNA methylation in-
clude programmed changes linked to gestational timing
as well as experiential changes. Our study, with a wide
range of gestation ages, using a non-biased, genome-
wide approach, shows a significant effect of both gesta-
tional age as a continuous predictor and PTB status as a
categorical predictor of placental DNA methylation.
The site of methylation may be crucial to the effect on

gene expression or a reflection of the impact of environ-
ment on gene expression. Clusters of CpG’s also known
as CpG islands (CGI) are present in 5′ promoter regions
of many genes. Methylation can also take place in shores
and shelves, which are more distant to the promoter.
Some studies have shown that tissue- and cancer-
specific DMRs occur more frequently within CpG shores
than CGIs themselves [25]. The functional implications
of alterations in methylation are context-specific. Methy-
lation in the immediate vicinity of the transcription start
site is believed to block initiation, whereas methylation
in the gene body may stimulate transcription elongation
and/or have an impact on splicing [25]. We saw the
greatest degree of differential methylation (almost 60%)
in distal intergenic regions. Second greatest differential
methylation was seen in introns other than the first in-
tron. In addition, enrichment analysis showed that hypo-
methylated DMRs were enriched for CpG Islands, while
hyper-methylated DMR were enriched for CpG shores
and shelves (Fig. 2). The annotation results, along with
the later enrichment results, are consistent with the re-
sults from previous studies suggesting methylation is
more dynamic outside of CpG islands in promoter re-
gions. The enrichment of CpG islands amongst the
hypo-methylated DMRs could be linked to chromosomal
instability and imprinting [26]. The implications of the
intergenic and intragenic methylation, as well as in
shores and shelves on preterm birth are significant, yet
mechanistically still unclear.

The most significant pathway associated with the
genes nearest to the 427 DMRs we observed was
Citrulline-Nitric Oxide Cycle, which contains the NOS1
gene. Our results found a hypermethylated DMR associ-
ated with both PTB and gestational age proximal to
NOS1. NO is secreted by placenta [27] and known to
modulate both fetal and utero placental blood flow [28].
Bielecki et al. found a lower concentration of NO in a
group of women with premature contractile activity in
comparison with gestational age-matched healthy preg-
nant women [29]. In another study the amniotic fluid
concentration of NO was significantly higher in patients
with intra-amniotic infection compared to those without
intra-amniotic infection [30]. A decrease in NO produc-
tion may contribute to the initiation of labor and cer-
vical ripening [31]. A study suggests that NO produced
by the placenta could play role in maintaining uterine
quiescence by paracrine effect [32]. These results suggest
that increased methylation of NOS1 may play an import-
ant role in the production of NO and subsequently pre-
term birth.
Another significant pathway was Fc-gamma Receptor

Mediated Phagocytosis in Macrophages. There is abun-
dant evidence for Fc gamma R mediated transcytosis of
IgG in the placenta. The transfer of IgG from mother to
fetus begins around 13 weeks of gestation and the total
IgG concentrations in newborns is directly related to
length of gestation. Infants born preterm have substan-
tially lower IgG levels than full-term babies [33]. We also
identified a DMR whose nearest gene is mannose bind-
ing lectin (MBL2), which has previously been identified
by pathway and network analysis to be related to pre-
term birth and evolutionarily associated as well [21, 22].
MBL2, found in amniotic fluid, is a serum protein in-
volved in the activation of the complement system of
the innate immune system and plays a role in fetal in-
flammatory response to infection and injury [34, 35]. It
activates complement system by binding to carbohy-
drates, present on a wide range of proteins [36]. More-
over, fetal MBL2 haplotypes and in utero exposure to
viral infection increases the risk of preterm birth [37].
When we compared our DMR results to data sets im-

portant in preterm birth, we identified a hyper-
methylated peak whose nearest gene is transferrin recep-
tor 1, TFRC. TFRC is expressed in the placenta and me-
diates cellular iron uptake. Iron deficiency during
pregnancy increases the risk of preterm birth [38]. While
TFRC was upregulated spontaneous preterm birth in the
Chim et al. placental expression study, it was also upreg-
ulated in the Lynch evolution of mammalian pregnancy
and found to be reduced placentas with intrauterine
growth restriction and preeclampsia [39]. Because pre-
maturity, IUGR and preeclampsia have different patho-
genic etiologies, the results suggest the importance of
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further investigation of the epigenetic regulation of
TFRC with respect to pregnancy related disorders.
The current study demonstrates the feasibility of sam-

ple collection, technical analysis and data processing. Po-
tential limitations of the study are the relatively small
sample size and the diversity of patients. Nonetheless, in
order to clearly define an effect of prematurity, we pur-
posefully collected placental samples from a wide range
of gestational ages. There was some variation in the
mothers’ clinical features beyond prematurity that may
have impacted DNA methylation. Nonetheless, these un-
biased data provide a useful reference for future studies
by us and others. In addition, we chose to study
genome-wide methylation using MeDIP-Seq due to its
feasibility and moderate expense as compared to other
techniques such as Whole Genome Bisulfite Sequencing.
The affinity-based approach coupled with deep sequen-
cing has a resolution of 100-300 bp and is cost effective
when single-base resolution is not necessary [40, 41].
Previous research suggested that at 1x coverage, a major-
ity of the methylated CpG can be studied [40]. It is im-
portant to note that MeDIP-seq, similar to restriction
enzyme digestion approaches, can only measure relative
enrichment of methylated DNA rather than absolute
methylation levels. Lastly, another advantage of MeDIP-
seq over WGBS is its ability to detect both 5-
Methylcytosine (5mC) and 5-hydroxymethylctyosine
(5hmC) independently [40, 41].

Conclusions
We identified associations between DNA methylation
and preterm birth, building on recent findings that pre-
natal environmental exposures mediate developmental
programming effects through epigenetic changes [3, 42].
Our data demonstrate that in future studies it will be
important to include gestational age matched samples
with prenatal conditions like intrauterine growth restric-
tion and environmental exposures such as drug use, en-
vironmental toxins and intrauterine infection. This will
allow us to predict which local differences in methyla-
tion segregate with which combinations of phenotype. In
addition, future studies should compare gestational age
matched placentas from births due elective cesarean (be-
fore the onset of labor). These studies form the basis for
future studies on the epigenetics of preterm birth, “fetal
programming” and the impact of environment exposures
on this important clinical challenge.

Methods
Placental samples
Placenta samples were collected by our research staff at
Women & Infants Hospital of Rhode Island. They ob-
tained shortly after delivery from births ranging from 25
weeks to 41 weeks of gestational age. Samples of villous

parenchyma were taken from four quadrants between
the chorionic and basal plate. Care was taken to avoid
maternal decidua and areas of hemorrhage or calcifica-
tion. Samples were placed immediately into RNAlaterTm

(Ambion, Inc., #AM7021) and stored at − 80 °C until
DNA extraction. Preliminary studies have shown that
macromolecules like RNA levels were similar from each
sample site and that this approach was equal to or su-
perior to immediate immersion in liquid nitrogen for
prevention of RNA degradation [43, 44].

DNA extraction
Genomic DNA was extracted using the Qiagen DNeasy
Blood and Tissue kit (Qiagen, # 69506) and quantified on
a NanoDrop 1000. 5μg of DNA was digested to fragment
size 200–300 base pairs using dsDNA Fragmentase en-
zyme at 37 °C for 30min (New England Biolabs,
#MO348L). Fragments were end-repaired, 3′-ends were
adenylated, and appropriate adapter indexes were ligated
using the Truseq protocol (Illumina). Between each reac-
tion, fragments were cleaned using Agencourt AmPure
magnetic beads (Beckman Coulter, # A63881). Fragments
were then amplified by PCR at 98 °C/30 s; 10 cycles of
98 °C/10s, 60 °C/30s, 72 °C/30s; and 72 °C 5min with a
hold at 10 °C. Enriched fragments were then cleaned using
Agencourt AmPure magnetic beads and quantified before
methylation-dependent immunoprecipitation.

MeDIP-seq
Methylated-DNA immunoprecipitation was performed
using the Methylated-DNA IP kit (Zymo Research, #
D5101). 320 ng of each sample was mixed with denatur-
ation buffer and heated to 98 °C for 5 min. DNA is then
mixed with MIB buffer, ZymoMag Protein A beads, and
Mouse Anti-5-Methylcytosine from and incubated at
37 °C for one hour, with mixing every 15 min. The tubes
were rocked, allowed to cluster, washed with reagent
buffer and then eluted at 75 °C for 5 min. This was
followed by a 2-min spin in a mini centrifuge at 18,000
g. The recovered DNA underwent 100 bp paired-end se-
quencing in the Brown University Genomics Core in
triplicate on an Illumina HiSeq 2500.
Raw sequence reads were separated according to

sample-specific barcodes and mapped to the NCBI Build
UCSC Hg19 human genome using the Burrows-Wheeler
Aligner (BWA v0.6.2) [45]. The SAM files were con-
verted to BAM files with SamTools (v0.1.18) [46] and
duplicate reads (reads with the same start location) were
removed using Picard Tools (v1.77) (https://github.com/
broadinstitute/picard). We used Model-based Analysis
for ChIP-Seq (MACS v1.4) [47] to identify significantly
enriched regions (peaks) using p < 1 × 10− 5 as the signifi-
cance threshold for each individual and technical repli-
cate independently.
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Identification of differentially methylated regions
We used the R Bioconductor packages DiffBind (http://
bioconductor.org/packages/DiffBind/) and DESeq2 [48]
to identify Differentially Methylated Regions (DMRs).
We used DiffBind to identify a peak set for the study co-
hort, requiring that each individual’s consensus peak set
contain only peaks which were present in all three tech-
nical replicates. For each individual, the read count for
each peak in the consensus peak set was merged by tak-
ing the sum over all three technical replicates. DMRs
were identified using DESeq2. P-values were corrected
using FDR with independent filtering of overall low
mean counts.

Genomic annotation and enrichment
DMRs with a p-value < 0.01 were annotated using R Bio-
conductor package ChIPseeker [19] to retrieve the near-
est gene to the peaks of interest and annotate the
genomic region of the peak. CpG islands and Refseq
gene exons and introns were downloaded from the
UCSC Genome Browser [49]. CpG shores and shelves
were defined 2 kb and 4 kb up and downstream from the
CpG islands, respectively. The Hg19 reference genome
was spilt into 500 bp windows and each window was an-
notated with the above genomic features if any overlap
existed. The ChromHMM annotation of the Placenta
Cell Line from the Roadmap Epigenome Project, ob-
tained from the UCSC Genome Browser, was used to
align the 500 bp windows with “promoter” and “enhan-
cer” state annotation [50]. The enrichment score for
each genomic feature (CpG islands, shores, shelves,
exons, introns, promoters, and enhancers) with respect
to the DMRs was calculated via the method in Zhang et
al. as the ratio between the fraction of DMRs overlap-
ping widows with genomic feature and the fraction of
total windows with the genomic feature [51].

Comparative gene set analysis
In order to examine the potential role of DNA methyla-
tion in the regulation of preterm birth we compared our
DMRs with previously published gene sets associated
with preterm birth and pregnancy.
Chim et al. used an array based approach to study dif-

ferential placental gene expression between spontaneous
preterm birth and spontaneous term birth. “They re-
ported 240 significantly upregulated and 186 signifi-
cantly downregulated genes in the placenta associated
with spontaneous preterm birth.” [20]. We also com-
pared the significant DMRs with a gene set identified in
curated articles, networks and pathways important in
the risk of preterm birth [21]. This set was obtained via
extensive literature curation and imputation. Lastly, we
compared significant DMRs to a gene set linked evolu-
tionarily to mammalian pregnancy [22]. In this work

Lynch et al. explore the evolution of pregnancy in pla-
cental mammals and identify 1532 gene that are
uniquely expressed in the endometrium. Many of these
genes were in close proximity to MER20, which regulate
gene expression in response to progesterone and cAMP.
These genes were broken down into gain and loss of ex-
pression in response to the stimuli.

Pathway analysis
Pathway analysis of the genes nearest to the DMRs with
p < 0.01 was performed using QIAGEN’s Ingenuity Path-
way Analysis (www.qiagen.com/ingenuity).

Statistical analysis
The Student’s t-test was used to evaluate significant dif-
ferences between cases and controls. A two- tailed
p < .05 was considered to indicate statistical significant
difference.

Additional files

Additional file 1: Clinical characteristics of sampled patients. (DOCX 14 kb)

Additional file 2: DMRs Associated with Preterm Birth. A tab delimitated
table containing information for each DMR that was found to be
associated to preterm birth with p < .01. The columns contain:
Chromosome, DMR start location, DMR end location, with of DMR, base
expression, log2FoldChange, p value, functional annotation and
annotated nearest gene. (XLSX 55 kb)

Additional file 3: Annotation of the differentially methylated regions
associated to preterm birth: CHipSeeker was used to annotate the 393
DMR (p < 0.01) with its corresponding genomic feature which is
dependent on its genomic location. The highest percentage of DMRs is
located in distal intergenic regions followed by introns. (PNG 119 kb)

Additional file 4: DMRs Associated with Gestational Age. A tab
delimitated table containing information for each DMR that was found to
be associated to gestational age with p < .01. The columns contain:
Chromosome, DMR start location, DMR end location, with of DMR, base
expression, log2FoldChange, p value, functional annotation and
annotated nearest gene. (XLSX 80 kb)
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