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Abstract

Background: Dominant optic atrophy (DOA) is an inherited optic neuropathy that mainly affects visual acuity,
central visual fields and color vision due to a progressive loss of retinal ganglion cells and their axons that form the
optic nerve. Approximately 45–90% of affected individuals with DOA harbor pathogenic variants in the OPA1 gene.
The mutation spectrum of OPA1 comprises nonsense, canonical and non-canonical splice site, frameshift and
missense as well as copy number variants, but intragenic inversions have not been reported so far.

Case presentation: We report a 33-year-old male with characteristic clinical features of DOA. Whole-genome
sequencing identified a structural variant of 2.4 kb comprising an inversion of 937 bp at the OPA1 locus. Fine
mapping of the breakpoints to single nucleotide level revealed that the structural variation was an inversion flanked
by two deletions. As this rearrangement inverts the entire first exon of OPA1, it was classified as likely pathogenic.

Conclusions: We report the first DOA case harboring an inversion in the OPA1 gene. Our study demonstrates that
copy-neutral genomic rearrangements have to be considered as a possible cause of disease in DOA cases.

Keywords: Case report, Inversion, Complex rearrangement, Dominant optic atrophy, OPA1, Non-homologous end
joining (NHEJ)

Background
Dominant optic atrophy (DOA, MIM#165500) and Leberʼs
hereditary optic neuropathy (LHON, MIM#535000) are the
two most common entities of inherited optic neuropathies
seen in clinical practice [1]. DOA was first described in the
1950s and is genetically and clinically distinct from LHON
[2, 3]. Clinically, affected individuals with DOA present
with temporally accented pallor of the optic nerve head at
fundus examination, and bilateral central or caeco-central
scotoma at visual field examination. A laterally symmetrical
temporal reduced thickness of the retinal nerve fiber layer

(RNFL) is seen upon optical coherence tomography
imaging (OCT). Other than in affected individuals diag-
nosed with LHON, who often show red-green dyschroma-
topsia, the color vision defect in DOA reflects a generalized
dyschromatopsia or is specific to the tritan axis [4]. Visual
acuity can range from 20/20 to light perception, with 40%
of affected individuals having a visual acuity over 20/60 [5].
Depending on the population studied, 45–90% of DOA

cases harbor pathogenic variants in OPA1 [6, 7], which
was the first gene to be described as an underlying cause
of DOA [8, 9]. OPA1 encodes a dynamin-related GTPase
which is imported into mitochondria and plays an import-
ant role in mitochondrial dynamics and structural main-
tenance of the cristae junctions [10, 11]. As of August
2020, the Human Gene Mutation Database (HGMD) lists
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404 disease-causing variants in OPA1. Most variants are
private and only few constitute founder alleles [7, 12].
Overall, the majority of disease-causing variants are
loss-of-function alleles, indicating that haploinsuffi-
ciency is the predominant disease mechanism under-
lying OPA1-linked DOA [12, 13]. The mutation
spectrum comprises nonsense, canonical splice site,
frameshift and missense variants. In addition, copy
number variants (CNVs) and deep-intronic variants
inducing aberrant splicing have been reported [14–17],
necessitating a comprehensive genetic diagnostic test-
ing including the analysis of read depth and intronic
sequences. So far, submicroscopic inversions in the
OPA1 gene have not yet been reported as a cause of
DOA. Since inversions are copy-neutral, they escape
detection by conventional diagnostic technologies such
as microarrays and read depth methods. We here
present the first affected individual with DOA in whom
whole genome sequencing based on short read technol-
ogy led to the identification of a complex structural
rearrangement including the first coding exon of OPA1.
Our findings demonstrate that copy-neutral genomic
rearrangements have to be considered as a possible
cause of disease in DOA.

Case presentation
The 33-year-old male subject of German descent presented
with a history of bilateral slowly progressive vision loss. His
younger brother was reported to have “bad vision” but was
not available for phenotypic and genetic analysis. Parents
and grandparents were apparently unaffected. Cerebral
imaging (magnetic resonance imaging with contrast) had
not revealed any underlying cause, particularly no space-
occupying lesions compromising the visual pathway.

Clinical investigation
At examination, best-corrected visual acuity was 0.5
(right eye) and 0.4 (left eye). According to previous
eye examinations, visual acuity was documented to

have been 0.8 in both eyes 10 years ago with a
continuous slowly progressive decline.
Anterior segment slit-lamp examination was unre-

markable. Intraocular eye pressure was within normal
limits, and no relative afferent pupillary defect was
found. Fundus ophthalmoscopy unveiled bilateral sym-
metric, temporally accented optic disc pallor, which is a
typical and characteristic finding of DOA (Fig. 1). Cor-
respondingly, the temporal optic atrophy could be con-
firmed by bilaterally reduced RNFL in OCT (Fig. 2).
Visual field examination of the central 30° of the visual

field was relatively unremarkable with only slight para-
central relative defects R > L (Additional file 1). Color
testing with Panel-D15 was significant for a dyschroma-
topsia to the tritan axis L > R (Additional file 2).
In summary, the affected individual presented with

characteristic clinical findings consistent with a diagnosis
of DOA.

Genetic analysis
Genomic DNA was extracted from peripheral blood using
standard protocols. Whole genome sequencing (2 × 150 bp
paired-end reads) was performed on an Illumina platform
(NovaSeq6000). The average coverage on target was 54.8x
(99.76% > 20x). Bioinformatic processing of raw read data,
annotation and variant calling was performed as described
previously [18]. For details refer to the megSAP pipeline
(https://github.com/imgag/megSAP) developed at the
Institute of Medical Genetics and Applied Genomics,
University Hospital Tübingen, Germany. Bioinformatic ana-
lysis and genomic coordinates given in this manuscript are
based on the GRCh37 genome (hg19). The Manta Structural
Variant Caller [19] identified a ~ 1 kB spanning inversion
that changes the orientation of the first coding exon of
OPA1. Manual inspection of split reads using the Integrative
Genomics Viewer (IGV, version 2.3, see Fig. 3) revealed a
complex rearrangement. Subsequent breakpoint PCR and
Sanger sequencing was performed in order to resolve the
variant configuration to single nucleotide resolution.

Fig. 1 Eye fundi. Temporal pallor of discs is seen in the right eye (a) and the left eye (b) of the affected proband
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Figure 4a gives a schematic overview of the structural
variant, and Fig. 4b shows the Sanger sequencing of the
breakpoint junctions. The nomenclature for the variant
according to the guidelines established by the Human
Genome Variation Society (HGVS) [20] was established as
follows: NC_000003.11:g.193,310,511_193,312,932delins193,
310,605_193,311,825[193,310,605_193,311,541inv].
It was not possible to obtain an RNA sample from the

proband, excluding transcript analysis. However, since
the inversion comprises the first coding exon of the
OPA1 gene including the translational start site, it most
likely constitutes a loss-of-function allele.

Discussion and conclusions
This is the first report of a submicroscopic inversion involv-
ing the OPA1 gene. Inversions are mainly mediated by three
mechanisms: While non-allelic homologous recombination

(NAHR) and the fork stalling and template switching
(FoSTeS) mechanism require homologous sequences at the
breakpoints, non-homologous end joining (NHEJ) is a repair
mechanism for double-strand breaks [21–24]. In the latter,
the inverted sequence directly ligates to the break-
point, independent of sequence homology. Using the
online tools Blast 2 Sequences (http://polyp.biochem.
uci.edu/blast/wblast2.html) and Repeat Masker (http://
www.repeatmasker.org), we analyzed the sequences
flanking the breakpoints for similarities to each other
and to repeat elements that can mediate genomic re-
arrangements (data not shown). The lack of sequence
homology at the breakpoints and the sequencing re-
sults of breakpoint junctions indicate that the struc-
tural variant described in this study most likely
involved multiple double-strand breaks and the rejoin-
ing of DNA fragments by NHEJ. Of note, we followed

Fig. 2 Optical coherence tomography (OCT) of the retinal nerve fiber layers (RNFLs). The right eye (a) and left eye (b) OCT of the affected
proband show temporal thinning of RNFLs
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Fig. 3 Integrative Genomics Viewer (IGV) screenshot of the genomic region containing the structural variant identified in the affected proband.
From top to bottom the read coverage track, the alignment track (reads colored by insert size and pair orientation and grouped by pair
orientation) and the gene track are shown. Colored reads represent discordant reads with unexpected insert size and/or pair orientation when
aligned to the reference genome indicating the structural variant. Blue read pairs/lines represent read pairs with right-right pair orientation, teal
reads represent read pairs with left-left pair orientation and red read pairs/lines represent read pairs with aberrant insert size. Split reads with soft-
clipped bases span the breakpoints of the structural variant

Fig. 4 Fine mapping of the structural variant by sequencing of breakpoint junctions. a Schematic representation of the structural variant. The
color of the arrows indicates normal sequence (grey), inverted sequence (yellow), inserted sequence (blue) and deleted sequence (pink). b Sanger
sequencing of breakpoint amplicons. The vertical dashed lines highlight the 5´ and 3′ breakpoints. The background colors of the
electropherogram correspond to the scheme shown in (A). The deleted sequences are indicated by pink triangles. Note that the inserted
sequence is actually “leftover original sequence” between the deletion and inversion events

Weisschuh et al. BMC Medical Genetics          (2020) 21:236 Page 4 of 6



the guidelines of the HGVS when assigning the no-
menclature to the variant. However, from a mechanis-
tic point of view, the inserted sequence is basically
“leftover original sequence” between the deletion and
inversion events.
Screening for the structural variant in a cohort of 350

optic atrophy cases that had been previously tested negative
for single nucleotide variants and CNVs in OPA1 was
performed using patient-specific breakpoint PCRs (primer
pairs OPA1-Inv-BP1-f: 5′-tgctcagcactaggcatctg-3′ / OPA1-
Inv-BP1-r: 5′-ttctggacgcctctcaatct-3′, OPA1-Inv-BP2-f: 5′-
ggaacgggaagggctaaa-3′ / OPA1-Inv-BP2-r: 5′-tcgaatcaccgt
ctctgaca-3′, and OPA1-Inv-BP3-f: 5′-tgtcttctttttcttccatttc-
cac-3′ / OPA1-Inv-BP3-r: 5′-atgcttatgctctcatctgttaggg-3′,
respectively). All patient-specific breakpoint PCRs were
performed as a duplex PCR reaction with primers that bind
to the reference sequence and amplify exon 1 of OPA1
(OPA1-Ex1-F: 5′-actgagtacgggtgcctgtc-3′ / OPA1-Ex1-R:
5’gccagattagagcctgcactt-3′). PCR products were resolved on
a 2% agarose gel. No additional cases could be identified
among the 350 unsolved cases. The variant was also absent
in our internal cohort of 1400 genomes, and in the public
databases gnomAD, ClinVar and DECIPHER. The lack of
additional cases indicates that the variant is private, and is
in line with the proposed molecular mechanism, since
recurrent genomic rearrangements are most often mediated
by NAHR, and not by NHEJ [25]. DNA samples were not
available for familial co-segregation analysis. Hence, we
could not establish whether the rearrangement was a de
novo event in our proband.
Compared to single nucleotide variants and small inser-

tions and deletions, the mapping of structural variants
(SVs) is much more challenging as they cover a large por-
tion of a read or are even larger than the read length [26].
As a consequence, the importance of SVs in Mendelian
diseases is not well defined. In a recent comprehensive
study, an average of 27,622 SVs was identified per human
genome, including 156 inversions per genome, many of
which intersected with genomic regions associated with
genetic disease syndromes [27]. Whole genome sequen-
cing detects SVs more reliably than exon-based
approaches since most of the functionally relevant junc-
tions will have both ends contained within introns or
intergenic regions. Given that sequencing costs are con-
stantly decreasing, whole genome sequencing is commis-
sioned into routine clinical care pathways more and more
frequently, offering the potential to detect SVs. Third-
generation sequencing technologies will probably further
improve the diagnostic sensitivity as long read lengths are
more likely to contain the whole SV (i.e. both break-
points), providing less potential for error and facilitating
mapping. Future studies will show whether the feasibility
to detect copy-number neutral rearrangements can boost
the diagnostic rate in Mendelian disorders like DOA.
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