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Abstract

Background: Hispanic/Latino (HL) populations bear a disproportionately high burden of type 2 diabetes (T2D). The ability to
predict T2D genetic risk using polygenic risk scores (PRS) offers great promise for improved screening and prevention. However,
there are a number of complications related to the accurate inference of genetic risk across HL populations with distinct ancestry
profiles. We investigated how ancestry affects the inference of T2D genetic risk using PRS in diverse HL populations from
Colombia and the United States (US). In Colombia, we compared T2D genetic risk for the Mestizo population of Antioquia to the
Afro-Colombian population of Chocó, and in the US, we compared European-American versus Mexican-American populations.

Methods:Whole genome sequences and genotypes from the 1000 Genomes Project and the ChocoGen Research
Project were used for genetic ancestry inference and for T2D polygenic risk score (PRS) calculation. Continental ancestry
fractions for HL genomes were inferred via comparison with African, European, and Native American reference genomes,
and PRS were calculated using T2D risk variants taken from multiple genome-wide association studies (GWAS) conducted
on cohorts with diverse ancestries. A correction for ancestry bias in T2D risk inference based on the frequencies of
ancestral versus derived alleles was developed and applied to PRS calculations in the HL populations studied here.

Results: T2D genetic risk in Colombian and US HL populations is positively correlated with African and Native American
ancestry and negatively correlated with European ancestry. The Afro-Colombian population of Chocó has higher
predicted T2D risk than Antioquia, and the Mexican-American population has higher predicted risk than the European-
American population. The inferred relative risk of T2D is robust to differences in the ancestry of the GWAS cohorts used
for variant discovery. For trans-ethnic GWAS, population-specific variants and variants with same direction effects across
populations yield consistent results. Nevertheless, the control for bias in T2D risk prediction confirms that explicit
consideration of genetic ancestry can yield more reliable cross-population genetic risk inferences.
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Conclusions: T2D associations that replicate across populations provide for more reliable risk inference, and modeling
population-specific frequencies of ancestral and derived risk alleles can help control for biases in PRS estimation.

Keywords: Polygenic risk score (PRS), Genetic risk, Type 2 diabetes (T2D), Genetic ancestry, Population genetics, Hispanic/
Latino (HL), Colombia, Chocó, Antioquia

Background
Diabetes mellitus is a global pandemic [1–3]. The preva-
lence of adult onset (type 2) diabetes has nearly doubled
over the last 30 years, and the number of cases has in-
creased by more than 300 million. This increase has been
driven largely by modernization and the accompanying
changes in diet and lifestyle. According to the Inter-
national Diabetes Federation (IDF) Atlas [4], 425 million
adults worldwide are currently living with diabetes, with
half of them remaining undiagnosed. In the United States
(US) alone, more than 100 million adults have either pre-
diabetes or diabetes. US Hispanic/Latino (HL) populations
bear a disproportionate burden of type 2 diabetes (T2D),
with a prevalence almost twice as high as that of non-
Hispanic whites [5, 6]. Globally, countries from the Latin
America and Caribbean region show the highest diabetes
prevalence compared to six other regions.
T2D is a multifactorial disease with a complex set of

interacting environmental and genetic causes contribut-
ing to its etiology. Historically, risk management for
T2D has been focused squarely on environmental fac-
tors, with an emphasis on changes in diet and lifestyle.
Physicians have been taught to evaluate a suite of clinic-
ally measurable risk factors, e.g. weight and blood pres-
sure along with blood sugar and cholesterol levels, in
assessing patients’ likelihood of developing T2D. In
addition to these clinical features, family history and
race/ethnicity are also widely recognized as T2D risk
factors, underscoring genetic contributions to disease ex-
pression. Indeed, genetic factors have been estimated to
account for 20–80% of the variance in T2D development
[7–9]. It follows that an understanding of individual pa-
tients’ genetic risk should become part of the standard
of care for T2D screening and prevention.
Individuals’ risk for common heritable diseases, such as

T2D, can be quantified as polygenic risk scores (PRS) [10].
The ability to calculate PRS rests on genome-wide associ-
ation studies (GWAS), which characterize specific genetic
variants (alleles) that increase disease risk [11]. GWAS
typically uncover numerous variants across the genome,
each of which contributes a small fraction of the overall
disease risk. PRS can be computed by summing the num-
ber of risk increasing alleles in individuals’ genomes, and
scores can be weighted by the effect sizes of the risk alleles
[12]. This approach to inferring genetic risk works very
well when it is applied to patient cohorts from the same

populations where the GWAS were conducted. However,
the extent to which genetic risk can be accurately calcu-
lated across populations with divergent ancestries is a
matter of contention [13, 14]. On the one hand, many
GWAS are highly replicable, with the same variants often
discovered in multiple populations [15, 16]. On the other
hand, recent studies have shown that differences in gen-
etic ancestry can lead to mis-estimation of PRS across
populations [17–19].
The challenge of accurate PRS estimation across ances-

try groups is particularly pressing for HL populations.
First, there is a severe bias towards European ancestry co-
horts in GWAS. As of 2006, only 0.06% of GWAS samples
were from HL cohorts, and the fraction had only risen
slightly to 0.54% by 2016 [20, 21]. Second, HL is a politic-
ally inspired, pan-ethnic label that does not correspond to
any natural (i.e. genetic) classification of human popula-
tions [22]. Individuals with origins in Latin America typic-
ally have three-way ancestry contributions from African,
European, and Native American source populations, and
they can differ dramatically with respect to the relative
proportions of each [23–27]. Even neighboring popula-
tions from within the same Latin American country can
show widely divergent ancestry profiles [28]. Accordingly,
the extent to which existing GWAS variants can be used
to accurately infer genetic risk among diverse HL popula-
tions is currently unknown.
In this study, we explored the relationship between an-

cestry and T2D genetic risk inference in HL populations
from Colombia and the US. We found that T2D genetic
risk is positively correlated with African and Native
American ancestry and negatively correlated with
European ancestry, consistent with epidemiological re-
sults. We also show that T2D genetic risk inference
holds up well across different GWAS ancestry cohorts
and propose an approach whereby ancestry information
can be used to support cross-population risk inference.

Methods
Diabetes epidemiological data
Data on the worldwide prevalence of diabetes mellitus
were taken from The World Bank [29]. Worldwide dia-
betes prevalence values are expressed as the percentage
of the population between the ages of 20 and 79 diag-
nosed with diabetes. Prevalence values are reported for
264 countries, which were broken down into seven
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World Health Organization (WHO) regions and four
WHO income groups. Data on the prevalence of dia-
betes for the United States (US) were taken from the
American Diabetes Association [30]. US diabetes preva-
lence values are expressed as the age-adjusted percentage
of the population diagnosed with diabetes. Prevalence
values are broken down by the US census self-identified
race/ethnicity groups and further sub-divided into coun-
try/region of origin for individuals who self-identify as
Hispanic/Latino (HL). Diabetes prevalence values for the
European-American (EA) and Mexican-American (MA)
populations were taken from the Utah Department of
Public Health [31] and the County of Los Angeles Public
Health agency [32]. Note that these US diabetes preva-
lence values correspond to the specific populations sam-
pled as part of the 1000 Genomes Project and used for
genetic risk inference (see Methods section on Type 2 dia-
betes (T2D) genetic risk inference).

Genome wide association study (GWAS) data
GWAS data were taken from the NHGRI-EBI GWAS
Catalog [11]. All reported GWAS (as of 3/31/2018) were
characterized with respect to the trait under consider-
ation and the ancestry of the study cohort. GWAS co-
horts were characterized as African, East Asian,
European, Hispanic/Latino, or Native American follow-
ing the GWAS Catalog framework for representation of
ancestry data in genomic studies [33]. The total number
of single-nucleotide polymorphism (SNP) associations
that reach the GWAS Catalog significance threshold
(P < 1 × 10− 5) were recorded for each GWAS trait. For
each T2D SNP association, we recorded the study (ies)
where it was reported, the cohort ancestry, the SNP
identifier, its chromosomal location, and the identity of
the trait-increasing effect allele. T2D GWAS summary
statistics for a trans-ethnic meta-analysis, which inte-
grated cohorts with four distinct ancestries, were taken
from the DIAGRAM consortium [34, 35]. For these data,
the GWAS SNP effect alleles, ancestry-specific directions
of effect, effect sizes, and P-values were recorded.

Type 2 diabetes (T2D) genetic risk inference
Whole genome sequences from the 1000 Genomes Pro-
ject [36] and imputed whole genome genotypes from the
ChocoGen Research Project https://www.chocogen.com
[37] were used for T2D polygenic risk score (PRS) calcula-
tion (Table 1). For the 1000 Genomes Project data, SNP
data were taken from the phase 3 data release for one Co-
lombian population – Colombians from Medellín,
Colombia – and two US populations: Utah Residents
(CEPH) with Northern and Western European Ancestry
and Mexican Ancestry from Los Angeles USA. The 1000
Genomes Project human genome sequence data are de-
identified and made publicly available for research use

without restriction. For the ChocoGen Research Project,
whole genome genotypes for sample donors were charac-
terized using the Illumina HumanOmniExpress-24 SNP
array as previously described, yielding ~ 500,000 SNPs per
individual [28, 37]. The genotypes were imputed using the
program IMPUTE2 [38] with the 1000 Genomes Project
phase 3 haplotype reference panel [39] as previously de-
scribed [40], yielding ~ 35 million additional SNPs across
all samples. The ChocoGen project was conducted with
the approval of the Ethics Committee of the Univerisidad
Tecnológica del Chocó (ACTA No 01-v1), and all sample
donors signed informed consent documents.
For each individual genome, an unweighted T2D PRS

was computed by calculating the normalized sum of the
number of T2D SNP effect alleles found in the genome
[12]. It should be noted that T2D PRS were not
weighted by SNP effect sizes owing to the fact that the
T2D SNP associations used here were curated from mul-
tiple studies whose effect sizes cannot be accurately
combined [16]. T2D PRS were calculated as:

PRS ¼
Xn

i¼1
Gi=

Xn

i¼1
Ai

where Gi ∈ {0, 1, 2} corresponds to homozygous absent,
heterozygous, and homozygous present effect alleles for
each T2D SNP i and Ai ∈ {0, 1, 2} corresponding the total
number of alleles with variant calls at each SNP i. T2D
PRS were compared to individuals’ continental genetic an-
cestry fractions – African, European, and Native American
– which were taken from our previous studies [28, 40].
T2D PRS were computed for the Colombian and US

populations using an unpruned set of 165 T2D-
associated SNPs along with a reduced linkage disequilib-
rium (LD) pruned set of 42 SNPs (Additional file 1:
Table S1). LD pruning was performed on the four Co-
lombian and US populations analyzed here using the
program PLINK [41] with 2000 SNP window size and a
threshold of r2 > 0.1, where r2 corresponds to the level
of linkage disequilibrium between pairs of SNPs in the
window. An additional round of LD clumping was per-
formed on the DIAGRAM GWAS summary statistic
data using the LDpred program, with the same sug-
gested window size of 2000 SNPs [42]. LDpred uses the
LDscore method to choose the highest effect size SNP
for each LD window and subsequently reweights the ef-
fect sizes for all retained SNPs.

Genetic ancestry and T2D risk
The program ADMIXTURE was used to compute the
three way continental ancestry percentages – African,
European, and Native American – for all individuals
from the Colombian and US populations analyzed here
[43]. The modern Colombian and US populations were
compared to the proxy ancestral reference populations
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shown in Table 1, with ADMIXTURE run for K = 3 an-
cestral components, corresponding to each of the three
continental population groups that admixed to form
modern American populations. This process yields a
vector of three ancestry fractions for any individual
admixed genome sampled from the modern populations:
fAfrican, fEuropean, fNativeAmerican (Additional file 2: Figure
S1). Then, for each of the three continental ancestry
components, individuals’ continental ancestry fractions
were regressed against their T2D PRS using unweighted
ordinary least squares regression (OLS) with the lm
function in R:

PRSi ¼ αþ βxi þ εi

where PRSi is the predicted polygenic risk score for in-
dividual i; α and β are constants describing the intercept
and slope, respectively; xi is the ancestry fraction for in-
dividual i; and εi is an error term describing the devi-
ation from the fitted line. The resulting OLS produces:
β0, the model β or slope; the standard error of the
model; the r2 value describing the model’s fit; the model
t-statistic; and a two-tailed P-value. For visualization
purposes, a best fit line with confidence intervals was
computed using local polynomial regression (loess).

Results
Diabetes prevalence and population disparities
Diabetes is characterized by an extremely high disease
burden along with pronounced disparities in prevalence
among countries, regions, and income groups worldwide
(Fig. 1a and b). It should be noted that, while these
prevalence data are not broken down into diabetes types,
the vast majority of diabetes cases correspond to adult
onset, non-insulin dependent, type 2 diabetes (T2D).
The US is no exception to this trend; there is a high
overall diabetes prevalence in the country and marked
disparities among racial and ethnic groups (Fig. 1c). Na-
tive Americans, African Americans, and Hispanic/Latino
(HL) populations bear a disproportionately high share of
the diabetes disease burden in the US compared to

Asian Americans and European Americans. Interest-
ingly, there are also notable disparities within ethnic
groups. HL populations with distinct origins in Latin
America can have very different diabetes prevalence
(Fig. 1d). Individuals from South America show diabetes
prevalence close to what is seen for Asian Americans,
whereas Mexican Americans show a two-times greater
prevalence, close to what is seen for Native Americans.
Among HL regional groups, diabetes prevalence can also dif-
fer between males and females in a group-specific manner.
The observed diabetes prevalence disparities among

HL groups with distinct origins begs an explanation.
Diabetes is a complex common disease with multifactor-
ial causes, including genetic and environmental effects
along with interactions between them. Nevertheless,
T2D in particular is strongly genetically influenced with
estimates of heritability ranging from 20 to 80% [7–9].
Furthermore, genetic ancestry is known to impact the
burden T2D; both African and Native American ances-
try have been associated with increased T2D prevalence
[44–48]. Thus, one may naively expect to observe more
uniformity in T2D prevalence within a single ethnic
group. But the pan-ethnic HL label does not in fact cor-
respond to a ‘natural’ group with a shared genetic ances-
try. Rather, HL groups encompass an extraordinarily
diverse set of populations, which are characterized by dis-
tinct combinations of ancestry from Africa, Europe, and
the Americas [23–27]. Additionally, the Native American
component of HL ancestry varies substantially according
to the regional origins of the populations [28, 49, 50].
With this in mind, we have been investigating the contri-
butions of ancestry to genetic risk and T2D health dispar-
ities in diverse HL populations.

GWAS ancestry bias and T2D risk inference
The power to infer genetic risk for complex common
diseases, such as T2D, has exploded in recent years
owing to the accumulation of GWAS for a wide variety
of health-related traits [10, 11]. GWAS yield lists of trait
SNP associations, including the identity of trait-
increasing effect alleles, each of which slightly increases

Table 1 Populations analyzed in this study

Data Sourcea Population Description Population Name nb

ChocoGen Chocoano in Quibdó, Colombia Chocó 94

1KGP Colombian in Medellin, Colombia Antioquia 94

1KGP Yoruba in Ibadan, Nigeria African 108

1KGP Iberian populations in Spain European 107

1KGP Utah residents with NW European ancestry European-American (EA) 99

1KGP Mexican Ancestry from Los Angeles USA Mexican-American (MA) 64

1KGP Peruvian in Lima, Peru Native American 85
a1KGP = 1000 Genomes Project
bn = number of sample donors per population
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the risk of disease. Accordingly, an individual’s genetic
risk for a given trait can be estimated as a polygenic risk
score (PRS), which is calculated as the normalized sum
of risk (effect) alleles encoded in their genome. However,
the overwhelming bias towards European cohorts in

GWAS [20, 21] presents a major challenge to this para-
digm. Specifically, the extent to which PRS can be accur-
ately inferred across population groups with distinct
ancestry profiles is a matter of great concern [13, 14].
On the one hand, many robust SNP associations are

Fig. 1 Diabetes global prevalence and population disparities. a Diabetes prevalence distributions shown for (a) the seven world health
organization (WHO) geographic regions and (b) the four WHO income groups. (c) Diabetes prevalence for United States (US) census race/
ethnicity groups. d Hispanic/Latino (HL) diabetes prevalence in the US broken down by country (region) of origin and shown separately for males
(black) and females (white)
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known to replicate across populations [15, 16]. On the
other hand, GWAS SNP ascertainment biases and demo-
graphic process have been shown to yield systematic er-
rors in PRS calculation across populations [17–19].
Here, we aimed to explore the effects of ancestry on

the calculation of PRS for T2D across diverse popula-
tions. In support of this effort, we found that T2D is dis-
tinct compared to GWAS for most other traits in several
respects, largely owing to the intensity of focus on the
genetic architecture of the disease and its epidemio-
logical importance for populations across the world.
T2D has the most independent studies of any trait in the
NHGRI-EBI GWAS catalog (Fig. 2a), and it has among
the most SNP associations reported for any trait (Fig. 2b).
Perhaps even more importantly, for our purposes, T2D
cohorts show substantially more ancestry diversity than
typical GWAS traits (Fig. 2c). A slight majority of T2D
GWAS cohorts have European ancestry, but there are sub-
stantial number of cohorts with East Asian, African, and
HL ancestry. A number of T2D GWAS have employed a
trans-ethnic study design, whereby cohorts with distinct

ancestries are combined in an effort to increase the reliabil-
ity of discovered SNP associations [34, 35]. Taken together,
the large number of T2D studies with diverse ancestry co-
horts and the large number of T2D associations provide
resolution for our efforts to (i) calculate PRS across diverse
populations and (ii) assess the impact of ancestry on pre-
dicted T2D genetic risk.

Ancestry and T2D genetic risk inference: Colombia
We first explored the relationship between ancestry and
T2D genetic risk for the Colombian populations of Antio-
quia and Chocó. Despite the fact that these two adminis-
trative departments (states) share a common border, their
populations were historically isolated and show very dis-
tinct ancestry profiles. The population of Antioquia has
majority European ancestry (75%) followed by Native
American (18%) and African (7%) fractions, whereas the
ancestry of Chocó is primarily African (76%) with smaller
European (13%) and Native American (11%) components
[28]. Genome sequences were characterized for individ-
uals from the two populations and T2D PRS were

Fig. 2 Genome wide association studies (GWAS) on type 2 diabetes (T2D). The number of (a) GWAS and the number of (b) SNP-associations per
GWAS trait are shown, with T2D values in red. c The fractions of continental ancestry groups represented in GWAS cohorts are shown for all
GWAS and for T2D GWAS alone
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computed for all individuals as described in the Methods.
The distributions of T2D PRS for the two populations
were then compared in order to assess their relative gen-
etic risk. Consistent with previous results [40], we found
that Chocó has significantly higher predicted genetic risk
for T2D compared to Antioquia (Fig. 3a), and the higher
genetic risk for T2D in Chocó is correlated with African
ancestry (Fig. 3b). The elevated T2D risk for Chocó can be
observed when all 165 T2D-associated SNPs are used for
PRS calculation (Fig. 3) or when a reduced set of 42 linkage
disequilibrium (LD) pruned SNPs is used (Additional file 2:
Figure S2 panels A & B). These findings are consistent with
reports from the US showing a correlation between T2D
genetic risk and African ancestry [51], and African Ameri-
cans are known to have substantially higher T2D prevalence
compared to European Americans [44, 46–48]. In Colombia
however, Antioquia shows approximately three-times higher
observed T2D prevalence compared to Chocó (Fig. 3c), in
direct contrast to the predicted genetic risk for the two pop-
ulations and the epidemiological data from the US.
We previously attributed the difference between the

relative predicted genetic risk of T2D for the two Co-
lombian populations and their observed T2D prevalence
to gene-by-environment interactions, whereby diet and
lifestyle in Chocó serve as protective factors against T2D
[40]. However, another possible explanation for this dis-
crepancy is that there is a systematic bias in T2D PRS
calculations across populations of this kind with distinct
ancestry profiles [17–19]. We addressed this possibility
by comparing the observed T2D relative risk for Chocó /
Antioquia to a null distribution of relative risk generated
by permuting 500,000 random sets of GWAS SNPs (risk
alleles) of the same size as the T2D SNP set. If there
were a systematic bias in the population-specific fre-
quencies of GWAS risk alleles for the two populations,
then the null distribution would be expected to show an
overall increase of genetic risk in Chocó. We do not ob-
serve any such bias; the observed relative risk of T2D is
significantly greater than the null expectation (Fig. 3d).
As previously described, the major source of bias for

cross-population PRS calculation is attributed to the vast
over-representation of European cohort GWAS. It is
possible that GWAS SNPs discovered in European study
cohorts will not accurately capture genetic risk in non-
European cohorts. This problem could be even more
exacerbated in the case of the admixed Colombian pop-
ulations studied here, one of which looks more
European while the other is more African. The fact that
T2D has been the subject of numerous GWAS across di-
verse population cohorts (Fig. 2) provides an opportunity
to interrogate this potential bias. To do so, we character-
ized T2D GWAS variants according to the ancestry of
the study cohorts where they were discovered and then
re-calculated population-specific T2D PRS distributions

for each ancestry separately. We were able to classify
T2D SNPs into five different ancestry profiles, three of
which showed significantly higher risk in Chocó and two
of which yielded no significant difference (Fig. 4). None
of the comparisons showed significantly higher T2D risk
in Antioquia, and all of the cohorts with ancestry most
similar to the Colombian populations (African, Multi-
ethnic, and Admixed American) showed higher relative
risk in Chocó. These results support the finding of
higher genetic risk for T2D in Chocó, associated with
African ancestry, and do not suggest that this finding
can be attributed to GWAS SNP discovery bias.

Ancestry and T2D risk inference: United States (US)
We performed a similar comparison of T2D genetic risk
for European-American (EA) and Mexican-American
(MA) populations in the US. With the same set of T2D
SNPs used to compare genetic risk in Colombia, the MA
population shows marginally higher T2D genetic risk
than the EA population (Fig. 5a). As was the case for
Colombia, the same differences in T2D genetic risk be-
tween the US populations can be seen when all 165
T2D-associated SNPs are used for the PRS calculations
(Fig. 5a) or when a reduced set of 42 linkage disequilib-
rium (LD) pruned SNPs is used (Figure S2 panels C &
D). For these two US populations, T2D genetic risk is
negatively correlated with European ancestry and posi-
tively correlated with Native American ancestry (Fig. 5b).
However, unlike what we observed in Colombia, the
relative genetic risk estimates between the two popula-
tions are consistent with the observed T2D prevalence;
the MA population shows approximately two-times
higher T2D prevalence than the EA population (Fig. 5c).
Despite the consistency of the T2D genetic risk esti-

mates and the observed prevalence values for these two
populations, we wanted to further explore the contribu-
tion of genetic ancestry differences to potential biases in
genetic risk calculation. To do so, we took advantage of
a recent trans-ethnic GWAS meta-analysis [34, 35] to
curate T2D SNPs that were discovered in one or more
cohorts with distinct ancestries, including European and
Mexican ancestry cohorts. We then computed T2D PRS
distributions using (i) significant SNPs that showed the
same direction of effect between the two ancestry co-
horts, (ii) SNPs that were significant in the European an-
cestry cohort only, (iii) SNPs that were significant in the
Mexican ancestry cohort only, and (iv) SNPs that
showed different directions of ancestry-specific effects
(Fig. 6). The SNPs with effects that are shared between
populations or effects that are population-specific all
yielded higher T2D PRS in the MA compared to the EA
population. The magnitude and significance of this rela-
tionship were most pronounced for the ancestry shared
SNPs (Fig. 6a). The SNPs with different effects between
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the two ancestry cohorts were the only ones that showed
higher T2D PRS in the EA population (Fig. 6d). These
results underscore the potential utility of combining co-
horts with distinct ancestries for GWAS SNP discovery,
in terms of both increasing the reliability of SNP effect
allele discovery and decreasing the likelihood of false
discoveries. Indeed, we found that the T2D SNPs that
showed shared effects across ancestry cohorts had effect
size odds-ratio (OR) values almost an order of magni-
tude higher than SNPs with divergent ancestry-specific
effects (Shared OR = 2.40 versus Divergent OR = 0.28).

Correcting for ancestry bias in T2D risk inference
A number of recent studies have underscored (i) the ex-
treme bias of European ancestry cohorts in GWAS [20, 21]
and (ii) the corollary potential to mis-estimate genetic risk

across populations with diverse ancestries [13, 14, 17–19].
Kim et al. identified two potential sources of bias for cross
population ancestry risk inference [18], which we will call
here SNP ascertainment bias and SNP discovery bias. SNP
ascertainment bias is related to the fact that SNP microar-
rays are typically used for genotyping in GWAS, and these
microarrays are designed, for the most part, to capture high
minor allele frequency (MAF) SNPs in European popula-
tions. This will lead to the ascertainment of SNPs with
higher MAF in European populations compared to other
global populations, particularly populations from Africa
that are enriched for ancestral alleles [52]. Then, systematic
differences in the proportions of derived alleles, which most
often correspond to the minor allele, versus ancestral al-
leles, may lead to directional biases in the estimation of
genetic risk. SNP discovery bias is related to the increased

Fig. 3 T2D genetic risk and observed prevalence in Colombia. a T2D polygenic risk score distributions are shown for Antioquia (green) and
Chocó (purple). b T2D polygenic risk scores for individuals from Antioquia and Chocó regressed against their percent African ancestry. c
Observed T2D diabetes prevalence for Antioquia (green), Chocó (purple), and Colombia overall (gray). d Observed T2D relative genetic risk
Chocó/Antioquia compared to the null distribution of relative genetic risk between the two populations
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power of GWAS to detect SNPs with higher MAF. Irre-
spective of microarray design, discovery of SNPs in
European cohorts will yield relatively higher MAF in
European populations compared to other populations,
which can also lead to mis-estimation of genetic risk across
populations with distinct ancestries.
Here, we propose a potential control for these two

sources of PRS bias, based on correction for systematic
differences in the proportions of ancestral versus derived
alleles in populations with distinct ancestry profiles. An-
cestral alleles tend to correspond to major alleles,
whereas derived alleles most often correspond to minor
alleles in discovery cohort populations. While GWAS
risk alleles can be more evenly distributed across ances-
tral (44%) versus derived (56%) alleles, differences in the
frequencies of these allele classes across populations can
still introduce bias in genetic risk inference [18]. The
idea behind the control that we propose here is to elim-
inate any possible bias owing to population-specific dif-
ferences in the frequencies of ancestral versus derived
alleles, which are mainly attributed to demographic fac-
tors (i.e. genetic drift).
The steps in the control are shown below. Further de-

tail regarding the execution of each individual step are
provided in Additional file 2 (see pages 5–7).

1. Collect trait SNP set and calculate population-
specific PRS values and between-population PRS
differences (ΔPRS).

2. Determine the distribution of derived allele
frequencies (DAF) for trait-associated SNPs in the
GWAS cohort source population.

3. Randomly sample SNP sets parameterized by this
DAF distribution based on the DAFs from the
distinct populations being compared (thereby
eliminating between-population DAF biases).

4. Calculate between-population ΔPRS for all ran-
domly sampled SNP sets and determine the
null ΔPRS distribution.

5. Compare the observed ΔPRS to the null ΔPRS distribution
and compute a z-score as the ancestry-corrected ΔPRS: corr.
ΔPRS= (obsΔPRS−μnullΔPRS)/σnullΔPRS.

An example of this control can be seen for the com-
parison of T2D genetic risk between the EA and MA
populations (Fig. 7). The observed value of ΔPRS for
EA-MA is − 2.08, while the null ΔPRS distribution is
centered around 0 with a mean value of − 0.16 and a
standard deviation of 1.25. Thus, there is a slight bias in
PRS calculation for the two populations. Accordingly,
correcting for SNP ascertainment bias does mitigate the
difference in predicted risk between the two populations,
with a corrected ΔPRS value of 1.54 that is marginally
significant at P = 0.054. Given what we know about the
higher prevalence of T2D in the MA population, we may
consider this correction to be accurate, in the sense that
it preserves the direction of the genetic risk difference,
but conservative as it dampens the observed effect.

Fig. 4 T2D genetic risk comparison in Colombia based on different GWAS cohort continental ancestries. T2D polygenic risk score distributions for
Antioquia (green) and Chocó (purple) are shown for SNP associations discovered in patient cohorts with distinct continental ancestries
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Discussion
HL populations are burdened with a high and increasing
prevalence of T2D, both in the US and in Latin America
(Fig. 1) [5, 6]. Recent developments in the estimation of
genetic risk using PRS provide opportunities to reduce
this burden through improved screening and prevention
efforts [10]. Nevertheless, there are a number of chal-
lenges that need to be met in order to ensure that gen-
etic risk of T2D, and other common heritable diseases,
can be accurately predicted using PRS [13, 14]. In par-
ticular, the bias towards European ancestry cohorts in
GWAS [20, 21] has the potential to limit the utility of
PRS in HL populations. In addition, the extremely di-
verse ancestries that can be found among HL popula-
tions could lead to mis-estimation of genetic risk for
distinct HL subgroups.
There are two broad solutions to these ancestry-

related challenges to genetic risk inference: (i) more data
and (ii) better methods. Obviously, more GWAS that

include cohorts that capture the genetic diversity of HL
populations will go a long way towards providing the
raw material, in the form of risk increasing genetic vari-
ants relevant to those same populations, which are
needed to compute accurate PRS. However, given the
current pace of efforts to diversify GWAS, along with
the very high cost of these studies, it is unrealistic to ex-
pect the GWAS coverage of HL populations to approach
that of European ancestry cohorts any time soon. In the
meantime, new methods that explicitly leverage ancestry,
e.g. modeling differences in allele frequencies across
populations, may help to increase confidence in cross-
population PRS calculation.
Here, we have shown that considering the consistency

of GWAS variant effects across populations and model-
ing population-specific allele frequencies can increase
confidence in cross-population PRS. T2D is a special
case with respect to common heritable diseases in the
sense that it has been extensively studied via numerous

Fig. 5 T2D genetic risk and observed prevalence for European-American (EA) and Mexican-American (MA) cohort populations. a T2D polygenic
risk score distributions are shown for EA (gold) and MA (green). b T2D polygenic risk scores for EA and MA individuals are regressed against their
percent European and percent Native American ancestry. c Observed T2D diabetes prevalence values for EA (gold), MA (green), and the United
States overall (gray)
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GWAS, and it has the most diverse set of ancestry co-
horts seen for any GWAS trait (Fig. 2) [11]. In addition,
recent studies have combined cohorts from different an-
cestries to increase confidence in the discovery of T2D
associated variants [34, 35]. These facts allowed us to
evaluate the extent to which GWAS variants discovered

in cohorts with different ancestries yield similar PRS.
The signal of T2D relative risk in Colombia is highly
similar when GWAS variants discovered in different an-
cestry cohorts are used for PRS (Fig. 4). A similar result
was seen for T2D risk in the US, but in this case,
consistency of T2D associations across cohorts seemed

Fig. 6 T2D genetic risk comparison between European-American (EA) and Mexican-American (MA) cohort populations based on ancestry-specific
SNP effects. T2D polygenic risk score distributions for EA (gold) and MA (green) populations are compared for (a) all SNPs with consistent
ancestry effects, (b) SNPs with European ancestry-specific effects, (c) SNPs with Mexican ancestry-specific effects, and (d) SNPs with opposing
ancestry effects
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to provide more reliable PRS estimates (Fig. 6). Finally,
we proposed a conservative control for cross-population
PRS inference based on modeling the frequencies of an-
cestral and derived alleles in the different populations
being considered (Fig. 7).
A recent study compared the utility of GWAS SNPs

ascertained from EA versus HL populations for a calculat-
ing PRS in HL populations across twelve different traits
[53]. While there was a wide variety of relative perform-
ance of EA SNPs across the traits, the majority of EA SNP
sets showed comparable risk prediction accuracy com-
pared to the best performing SNP sets, which included in-
formation from HL GWAS cohorts. Nevertheless, the
inclusion of non-EA GWAS association results to refine
the SNP weights improved accuracy across the board. The
results are consistent with our own findings suggesting
that information from multi-ethnic GWAS cohorts can be
used to refine PRS inference.

Conclusions
One promising area for future work entails the applica-
tion of machine learning methods to the inference of
polygenic risk [54]. Currently, PRS calculations are based

on GWAS that explicitly assume an additive model of
genetic effects on traits of interest. Accordingly, standard
methods for computing PRS, such as the kind we use
here, entail a straightforward summation of risk alleles
genome-wide. Of course, it may be more biologically
realistic to assume that there are non-additive genetic ef-
fects among variants discovered by GWAS and used for
PRS. If this is indeed the case, then more sophisticated
machine learning algorithms may ultimately improve the
accuracy of PRS calculation. The use of machine learn-
ing for polygenic risk inference is still in the very early
stages; it remains to be seen if this approach will yield
demonstrable improvement over current best practices.
The control we developed here for cross-population PRS

inference is based on differences in ancestral versus derived
allele frequencies among populations with distinct ancestry
profiles. However, differences in LD across populations with
divergent ancestries can also confound cross-population PRS
inference. This is particularly true for African ancestry popu-
lations, which tend to have short and distinct LD blocks
compared to non-African populations. Accordingly, control-
ling for such differences provides another promising ap-
proach for improving cross-population PRS inference.

Fig. 7 Correcting for ancestry bias in T2D risk inference. The null distribution of T2D relative risk between the EA-MA populations is generated by
randomly sampling risk alleles with the same frequency of ancestral/derived alleles as the GWAS source population. The initial observed T2D
relative risk is compared to the null distribution to yield a corrected score. The observed T2 relative risk is shown on the distribution (arrow) along
with the corrected T2D relative risk value and its significance (upper left)
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Indeed, a previous study has shown that accommodating dif-
ferences in LD patterns across populations can substantially
improve the accuracy of PRS computed for distinct ancestry
cohorts [55]. In the future, we plan to combine allele fre-
quency and LD based approaches to improving the accuracy
cross-population PRS.
We employed a population-level approach to T2D gen-

etic risk inference and evaluation in this study, comparing
T2D relative genetic risk between populations to
population-specific ancestry profiles and epidemiological
data on observed T2D prevalence. Taken together with
the robust collection of T2D variant associations from a
number of diverse GWAS cohorts, this approach allowed
us to broadly assess the impacts of ancestry on T2D gen-
etic risk inference in HL populations. Going forward, a
more rigorous assessment of PRS accuracy will require
individual-level phenotype data, for both model training
and test sets. Data of this kind are beginning to emerge
thanks to the activity of a number of diabetes research
consortia along with more broadly focused biobanks that
collect patient genotypes and electronic health records.
We anticipate that joint analysis of individual-level
genotype-phenotype data gleaned from sources of this
kind will help to further develop and validate ancestry-
informed approaches to T2D genetic risk inference.
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