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Abstract

Background: A multidirectional relationship has been demonstrated between myocardial infarction (MI) and
depression. However, the causal genetic factors and molecular mechanisms underlying this interaction remain
unclear. The main purpose of this study was to identify potential candidate genes for the interaction between the
two diseases.

Methods: Using a bioinformatics approach and existing gene expression data in the biomedical discovery support
system (BITOLA), we defined the starting concept X as “Myocardial Infarction” and end concept Z as “Major
Depressive Disorder” or “Depressive disorder”. All intermediate concepts relevant to the “Gene or Gene Product” for
MI and depression were searched. Gene expression data and tissue-specific expression of potential candidate genes
were evaluated using the Human eFP (electronic Fluorescent Pictograph) Browser, and intermediate concepts were
filtered by manual inspection.

Results: Our analysis identified 128 genes common to both the “MI” and “depression” text mining concepts.
Twenty-three of the 128 genes were selected as intermediates for this study, 9 of which passed the manual filtering
step. Among the 9 genes, LCAT, CD4, SERPINA1, IL6, and PPBP failed to pass the follow-up filter in the Human eFP
Browser, due to their low levels in the heart tissue. Finally, four genes (GNB3, CNR1, MTHFR, and NCAM1) remained.

Conclusions: GNB3, CNR1, MTHFR, and NCAM1 are putative new candidate genes that may influence the
interactions between MI and depression, and may represent potential targets for therapeutic intervention.
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Background
Myocardial infarction (MI) is a highly prevalent cardiovas-
cular disease. The American Heart Association released a
scientific statement in 2014 and recommended that
depression should be considered a risk factor for adverse
medical outcomes in patients with acute coronary
syndrome [1]. Depression may cause many adverse out-
comes, including autonomic dysfunction [2], inflamma-
tion [3], endothelial dysfunction [4, 5], hyperactivity of the

hypothalamic-pituitary-adrenal axis [6], and poor compli-
ance [7], which subsequently lead to an increased risk
of MI. Both the severity and cumulative duration of
depressive symptoms have a negative impact on the
MI prognosis [8]. On the other hand, patients with
MI may have a higher prevalence of depression [9].
In an assessment of 10,785 patients with MI per-
formed using a structured clinical interview, depres-
sion was common and persistent in MI survivors.
Major depression was identified in approximately 1
of 5 (19.8%) patients hospitalized with MI [10].
Thus, understanding the interaction between MI and
depression is very important for the development of
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Fig. 1 Flow chart of the study design

Table 1 Description of the 11 MI and MDD microarray platforms and the gene symbols that overlapped with the CIMs

Disease Series Tissue Platform Control samples
(n)

Subjects samples
(n)

Gene symbols overlapped with
CIM

Myocardial Infarction GSE48060 Peripheral blood GPL570 21 31 None

GSE83500 Aortic wall GPL13667 20 17 IL-6

GSE97320 Peripheral blood GPL570 3 3 HLA-B
PPBP
PTPRC
SERPINA1

GSE61145 Serum GPL6106 10 14 RERE
PADI4

Major depressive
disorders

GSE54562 anterior cingulate cortex GPL6947 10 10 None

GSE54563 anterior cingulate cortex GPL6947 25 25 FCGR3B
LPA

GSE54564 Amygdala GPL6947 21 21 STAR
ESR1

GSE54565 anterior cingulate cortex GPL570 16 16 GNB3

GSE54566 amygdala GPL570 14 14 None

GSE54567 dorsolateral prefrontal
cortex

GPL570 14 14 PAG1
NSF

GSE54568 dorsolateral prefrontal
cortex

GPL570 15 15 ESD
LCAT
DMD

GSE54570 dorsolateral prefrontal
cortex

GPL96 13 13 None

GSE54571 anterior cingulate cortex GPL570 13 13 AR
CNR1
CPAMD8
HLA-B

GSE54572 anterior cingulate cortex GPL570 12 12 MTHFR
NCAM1

GSE54575 orbital ventral prefrontal
cortex

GPL96 12 12 CD4

MI Myocardial Infarction, MDD Major Depressive Disorder, CIM Candidate Intermediate Molecules

Dai et al. BMC Medical Genetics          (2019) 20:104 Page 2 of 10



therapeutic interventions and determining patients’
needs.
The biomedical support discovery system (BITOLA) is

a sophisticated bioinformatics tool that enables new dis-
coveries, such as mining new information from the
literature without using patient tissue samples, especially
for identification of key candidates, and finding poten-
tially new relationships among various biomedical con-
cepts [11, 12]. Some researchers have used the text
mining tools to identify candidate genes for diseases
[13], such as multiple sclerosis and bilateral polymicro-
gyria [12, 14, 15]. In addition, using the BITOLA system,
genes neural cell adhesion molecule 1 (NCAM1) and
CD4 were identified as potential candidate genes in the
interaction between depression and oral lichen planus [16].
Because the molecular mechanisms underlying the

interaction between MI and depression remain unclear,
the aim of the study is to identify new potential candi-
date genes linking these two diseases.

Methods
Extracting intermediate concepts from the BITOLA system
BITOLA is an interactive, literature-based, biomed-
ical discovery support system (http://arnika.mf.uni-lj.
si/pls/bitola2/bitola) [17]. The purpose of the system
is to generate new findings by discovering potentially
new relationships between biomedical concepts, es-
pecially candidate genes that have aetiological
relationships with diseases. Currently, the set of con-
cepts in the BITOLA includes Medical Subject
Headings (MeSHs), which are utilized to index
human genes from the Human Genome Organization
(HUGO) and Medline [11]. By mining the Medline
database, new information from the literature can be
explored to identify new potential candidate genes
linked to both MI and depression, and the potential
new relationships can be discovered. Flow chart of
the study design was shown in Fig. 1.
According to the proposed instructions of the tool,

we used a closed discovery system in this study.
Briefly, the item “Myocardial infarction” was entered
as the starting concept X (Semantic types: disease or
syndrome), and the items “Major Depressive Dis-
order” and “Depressive disorder” were entered as the
end concepts Z (semantic types: Mental or Behav-
ioral Dysfunction). Using those concepts, intermedi-
ate concepts Y were examined and extracted. In this
study, the semantic types of intermediate concepts
mainly referred to the “Gene or Gene Product”.
Then, the intersection of the two gene sets of related
concepts Y (gene or gene product) in total was
retrieved for further analysis. These intermediate
concepts were defined as the candidate intermediate
molecules (CIMs).

Identifying differentially expressed intermediate concepts
Next, we tentatively filtered and evaluated the “Gene or
Gene Product” by overviewing their mRNA (messenger
ribonucleic acid) expression levels under different condi-
tions (MI vs. control or depression vs. control). We
reserved differentially expressed “gene or gene product”
for the next analysis and excluded non-differentially
expressed genes.

Gene expression datasets and statistical analysis
Gene expression datasets were obtained from the
GEO database. The MI datasets used in this study are
GSE48060, GSE83500, GSE97320, and GSE61145.
GSE48060 was developed from the PBMCs of 52
patients diagnosed with MI and normal controls [18].
The GSE83500 dataset was developed from the aortic
wall of MI patients and healthy individuals. GSE97320
and GSE61145 were developed from the peripheral
blood from 6 and sera from 24 MI patients and nor-
mal controls. [19]. The depression datasets used in this

Table 2 Differentially expressed gene or gene product
suggested by the closed BITOLA system

Gene or gene product FreqXY FreqYZ FreqXY*FreqYZ

LPA 1 1 1

FCGR3B 2 7 14

STAR 4 1 4

ESR1 3 2 6

GNB3 4 1 4

PAG1 1 1 1

NSF 1 1 1

ESD 1 1 1

LCAT 1 1 1

DMD 3 1 3

AR 2 1 2

CNR1 1 2 2

CPAMD8 2 4 8

HLA-B 1 1 1

MTHFR 40 4 160

CD4 11 16 176

IL6 99 20 1980

RERE 1 1 1

PADI4 1 1 1

SERPINA1 1 1 1

PTPRC 8 1 8

PPBP 4 1 4

NCAM1 1 7 7

Freq Frequency of co-occurrence of two concepts in literature, X starting concept
“Myocardial infarction” Z: end concept “Major Depressive Disorder” or
“Depressive disorder”
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study are GSE54562, GSE54563, GSE54564, GSE54565,
GSE54566, GSE54567, GSE54568, GSE54570, GSE54571,
GSE54572, and GSE54575 [20].
All GEO datasets were obtained from the GEO NCBI

database, and the DEGs between the case group and the
normal controls were analysed using the integrated
GEO2R tool [21, 22]. Samples were assigned within a
GEO series as either a normal control or case group
depending upon the sample source and experimental
classification. A T-test was used to sort out the DEGs.
Multiple testing was applied using the Benjamini and
Hochberg false discovery rate method. GEO2R pro-
vides a list of all probes (and corresponding gene
aliases) ranked according to their degrees of differen-
tial expression. The top 250 probes were selected for
the subsequent analysis, and finally the probes were
converted into gene names.

Manual checking of the intermediate concepts
False-positive genes may be identified during litera-
ture mining, and manually checking is a precise
method to recognize these genes. We manually
checked the gene symbols in the co-occurrence

literature together with MI and depression and ex-
cluded the ambiguous terms that could apply to
other topics.

Evaluating expression patterns of the remaining “gene or
gene product”
After manually checking the intermediate concepts, the
remaining “Gene or Gene Product” were further filtered
based on tissue-specific expression. For inclusion as can-
didate genes for the interaction of MI and depression,
the genes from the list had to show a specific pattern of
expression in both the heart and brain tissue; genes that
did not satisfy the conditions were excluded. The
Human eFP (“electronic Fluorescent Pictograph”)
Browser (http://bar.utoronto.ca/efp_human/) was used
to rapidly interpret the gene expression profiles; this
program enables the user to easily visualize large-scale
data sets based on representations of the human body
[23]. In the gene expression profiling studies, the gene
symbol was entered, the “Absolute” mode was chosen
for interpretation, and the “Nervous” or the “Circulatory
Respiratory” data source was selected. After clicking
“Go”, the representations of human samples are

Fig. 2 Human eFP Browser output showing GNB3 expression in the brain and heart tissues. Strong expression levels in the heart ventricle and
the cingulate cortex and subthalamic nucleus are denoted by the red colouring. a, b: Expression “anatograms” and histogram for heart tissues.
c, d, Expression “anatograms” and histogram for brain tissues
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coloured based on the expression level of the gene of
interest to generate expression “anatograms” for rapid
interrogation. Using this procedure, we can determine
whether the given “Gene or Gene Product” is most
strongly expressed in the heart or brain tissue. A yellow-
red scale is used depict the expression levels, with yellow
denoting no expression in a given depiction of a tissue
and red denoting maximal expression [23].

Results
Intermediate concepts relevant to “Gene or Gene
Product” for MI and depression
Using the adapted discovery algorithm with the starting
concept X and end concept Z and its integration into
the closed BITOLA system, we searched the entire inter-
mediate concept Y relevant to “Gene or Gene Product”.
We defined the starting concept X as “Myocardial In-
farction” and end concept Z as “Major Depressive Dis-
order” or “Depressive disorder”. In this manner, 72 and
111 “gene or gene product” were suggested by the closed
BITOLA system with the starting concept “Myocardial
Infarction” and the end concepts “Major Depressive Dis-
order” and “Depressive disorder”, respectively. The

intersection of the two gene sets of 128 related concepts Y
(gene or gene product) in total was selected for further
analysis, and we defined these selected genes as the CIMs.

Genes differentially expressed in both MI and depression
Analysis of the GSE48060, GSE83500, GSE97320, and
GSE61145 for MI, GSE54562, GSE54563, GSE54564,
GSE54565, GSE54566, GSE54567, GSE54568, GSE54570,
GSE54571, GSE54572, and GSE54575 data sets for major
depressive disorders obtained from the Gene Expression
Omnibus (GEO) revealed 2750 differentially expressed
genes (DEGs). After contrastive analysis, seven genes (IL-6,
HLA-B, PPBP, PTPRC, SERPINA1, RERE, and PADI4) were
found to overlap between the 128 CIMs and the DEGs
from GSE83500, GSE97320, and GSE61145. Meanwhile,
sixteen genes (FCGR3B, LPA, STAR, ESR1, GNB3, PAG1,
NSF, ESD, LCAT, DMD, AR, CNR1, CPAMD8, HLA-B,
MTHFR, and NCAM1) overlapped between the 128 CIMs
and the DEGs from GSE54563, GSE54564, GSE54565,
GSE54567, GSE54568, GSE54571, and GSE54572 (Table 1).
We further explored the correlations between MI and de-
pression by defining the overlap between the DEGs and the
128 CIMs (Tables 1 and 2).

Fig. 4 Human eFP Browser output showing MTHFR expression in the brain and heart tissues. High expression levels in the atrium, cerebellum, and
subthalamus nucleus are denoted by red colouring. a, b: Expression “anatograms” and histogram for heart tissues. c, d, Expression “anatograms” and
histogram for brain tissues
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To remove the genes that were not the original ideas for
the “gene or gene product”, we used the most precise
method, manual checking, to evaluate the abbreviations or
the alternative names for these genes used in the literatures.
Fourteen genes (FCGR3B, STAR, ESR1, PAG1, NSF, ESD,
DMD, AR, CPAMD8, HLA-B, RERE, PADI4, PTPRC, and
LPA) failed to pass the follow-up manual literature mining
inspection due to ambiguous terms aroused by the defects
in the literature mining itself and thus were removed from
further analysis.

Common gene expression patterns in heart and brain
tissues
In the analysis, we examined the gene expression
patterns of the remaining genes by using the Human
eFP Browser [23], which provides an overview of gene
expression levels in the heart and brain. LCAT, CD4, SER-
PINA1, IL6, and PPBP failed to pass the follow-up filter,
partly because these genes were not preferentially expressed
in the heart tissue, which is the target of MI. Based on the
tissue-specific expression patterns of the remaining genes,
GNB3, CNR1, MTHFR, and NCAM1 were chosen as
potential candidate genes for further analysis (Fig. 2, 3, 4, 5)
. The analysis showed that GNB3 was highly expressed in

the heart ventricle and cingulate cortex of the brain (Fig. 2).
CRN1 showed the highest expression in the heart atrium
and cerebellum and nucleus accumbens of the brain (Fig. 3)
. Furthermore, MTHFR was overexpressed in the heart
atrium and cerebellum and subthalamus nucleus of the
brain (Fig. 4). Figure 5 shows the NCAM1 gene, which has
high expression in the heart atrium and cerebral cortex and
amygdala of the brain. Taken together, these results suggest
that the overexpression of the GNB3, CNR1, MTHFR, and
NCAM1 genes may contribute to the development of MI
and depression and may play a role in the interaction
between these two diseases.

Discussion
In this study, we present for the first time a preliminary
literature mining work exploring candidate genes related
to MI and depression. By integrating data from the litera-
ture, we revealed 4 genes of interest (GNB3, CNR1,
MTHFR, and NCAM1) that were likely to be associated
with the aetiology of both MI and depression.
G proteins play an important role in intracellular signal

transduction from the cell surface [24]. A C3T poly-
morphism at nucleotide 825 in exon 10 of the G protein
β3 subunit gene (GNB3/C825T) was demonstrated to be

Fig. 3 Human eFP Browser output showing CRN1 expression in the brain and heart tissues. The highest expression areas located in the heart atrium
and the cerebellum and nucleus accumbens in the brain are denoted by red colouring. a, b: Expression “anatograms” and histogram for heart tissues.
c, d, Expression “anatograms” and histogram for brain tissues
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associated with enhanced intracellular signal transduction
[25] and a variety of cardiovascular risk factors, including
hypertension [25], obesity [26], dyslipidaemia [27],
diabetes, and atherosclerosis [28]. An association between
GNB3/C825T and MI has also been reported [29]. In
addition to the roles mentioned above, studies have
implicated a role for GNB3/C825T in depressive disorder
[30–32] and the efficacy of antidepressants for the treat-
ment of major depression disorders [33]. In the present
study, we found the highest GNB3 expression in the heart
ventricle and cingulate cortex of the brain (Fig. 2), which
was in accordance with the aetiology of depression [34] .
Thus, further study of GNB3 is essential for assessment of
the interaction between MI and depression.
Cannabinoid receptor 1 (CNR1) is one member of the

seven transmembrane G-protein coupled receptor family
and can regulate the levels of second messenger mainly
through coupling with G proteins after activation by
endocannabinoids [35, 36]. The CNR1 receptor may play
a protective role through a wide variety of mechanisms,
including inhibition of excessive noradrenaline release
from the sympathetic nerve fibres [37], lowering inflam-
mation, oxidative stress, fibrosis, and excitotoxicity, and
enhancing blood flow [38]. Therefore, cannabinoid

receptor agonists can be considered as a prospective
group of compounds for creation of drugs that are able
to protect the heart against ischaemia-reperfusion injury
in the clinical setting [39]. Over the past few years,
numerous studies have suggested that depression
directly results in the hyperactivity of the hypothalamic-
pituitary-adrenal axis [6]. Studies have also suggested
that CNR1 negatively regulates the hypothalamic-
pituitary-adrenal axis function [40, 41]. In addition, mice
lacking CNR1 can develop depressive-like behaviours or
disorders [42]. Specifically, in our study, high CNR1
expression in the brain areas was observed at the
nucleus accumbens (Fig. 3), which has been suggested to
be related to a lack of interest and other symptoms of
depression [43]. The evidence above suggests that target-
ing the endocannabinoid system may evolve as a novel
therapeutic concept to limit the devastating conse-
quences of MI and depression.
Methylenetetrahydrofolate reductase (MTHFR) is a key

enzyme involved in homocysteine metabolism. An ele-
vated total plasma homocysteine level has been demon-
strated to be associated with both cardiovascular disease
and depression [44, 45]. Because the C-to-T transition can
cause reduced enzyme activity and elevated total plasma

Fig. 5 Human eFP Browser output showing NCAM1 expression in the brain and heart tissues. Strong expression levels in the atrium, cerebral cortex, and
amygdala are denoted by red colouring. a, b: Expression “anatograms” and histogram for heart tissues. c, d, Expression “anatograms” and histogram for
brain tissues
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homocysteine levels, a positive relationship may exist be-
tween the MTHFR 677 C→T polymorphism and these
two diseases, which has also been demonstrated [46, 47].
This polymorphism was also associated with a risk of MI
[48, 49]. Moreover, the results confirmed those of very
recent meta-analyses of genome-wide association studies,
suggesting that MTHFR was a genetic overlap candidate
gene that likely was shared between mood disorders and
cardiovascular diseases [50]. These findings provide some
concrete directions for further research.
NCAM1, which is also known as CD56, is a member

of the immunoglobulin superfamily [51]. NCAM1 was
first identified in brain tissue and is the best surface anti-
gen for identification of human NK cells [52]. Numerous
studies have suggested that NCAM1 is a gene of interest
associated with the pathogenesis of depressive disorder
[52–54]. Experimental evidence showed that NCAM
deficiency in mice resulted in a depression-like pheno-
type that could be reversed by an NCAM-derived
peptide [55]. In the present study, the NCAM1 gene was
mainly expressed in the cerebral cortex and amygdala in
the brain (Fig. 5), which are involved in the pathogenesis
of depression [56]. In addition to its role in depression,
studies have also suggested its correlations with MI [57].
One study demonstrated that NCAM1 was upregulated
under metabolic stress in cardiomyocytes and suggested
that NCAM1 was a cardioprotective factor [58]. Hence,
this evidence may have implications for the role of
NCAM1 in communication between MI and depression
that warrants further exploration.

Conclusion
In conclusion, using literature mining methods, the
GNB3, CNR1, MTHFR, and NCAM1 genes were identi-
fied and directly or indirectly implicated in the regula-
tion of MI and depression. Although additional research
is needed to confirm these findings, our study reduced
the candidate causal genes to a manageable number and
might present potential new clues for future research.
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