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Abstract

Background: Metabolic syndrome (MetS) is characterized by a clustering of cardiovascular risk factors that include:
abdominal obesity, dyslipidemia, hypertension and glucose intolerance. Angiopoietin-like protein 4 (ANGPTL4) is a
circulating peptide that is an inhibitor of lipoprotein lipase, a key enzyme in lipid metabolism. The objective of this
study was to investigate the association of ANGPTL4 gene variants (E40K) with fasting serum triglyceride levels and
with cardiovascular risk factors, that included the presence of MetS in 817 subjects recruited from the Mashhad
stroke and heart Atherosclerosis Disorders (MASHAD) cohort Study.

Method: ANGPTL4 genotypes were determined using a TaqMan genotyping based real time PCR method. The
association of the genetic variant with the risk of metabolic syndrome and its relationship with lipid profile were
determined.

Result: The frequency of GG, GA and AA genotypes were 96.9, 2.7 and 0.4% in individuals with MetS, and 78.8, 20.8,
0.4%, in those without MetS. The GA genotype of the rs116843064 polymorphism was associated with a lower risk
for MetS (e.g., OR in Codominant genetic model: 0.14, 95% CI: (0.06–0.33), p < 0.0001). Subject with an A allele had a
higher risk for MetS (OR: 6.72, 95% CI: (3.05–14.82), p < 0.0001). There was a significant difference in fasted lipid
profiles across the genotypes for ANGPTL4. Carriers of the AG genotype had higher levels of serum HDL-cholesterol
(HDL-C) and lower TG, compared to the GG homozygotes genotype.

Conclusion: The G allele at the rs116843064 polymorphic locus of the ANGPTL4 gene was associated with a lower
prevalence of MetS.
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Background
Metabolic syndrome is increasing globally, and is im-
portant because of its association with increased cardio-
vascular disease (CVD) risk [1]. It affects about 20 to
25% of the adult population [2]. MetS is characterised by
a clustering of CVD risk factors that include: high blood

pressure, dyslipidemia, impaired glucose tolerance and
abdominal obesity [1]. MetS is associated with an in-
creased risk of CVD and diabetes mellitus [3, 4]. MetS is
also associated with other co-morbidities including fatty
liver [5, 6], asthma [7, 8] and some cancers [9–11].
The development of MetS depends on environmental

(e.g., physical inactivity, diet, gender, age) and genetic
factors [12–16]. Chronic stress has also been shown to
increase the risk of MetS [17]. Angiopoietin–like pro-
teins are secreted proteins [18] that have major role in
the metabolism of energy, lipid and glucose [19, 20].
Angiopoietin–like proteins 4 (ANGPTL4) is a circulating
peptide which inhibits lipoprotein lipase [21] and hence
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influences the metabolism of triglyceride-rich lipopro-
teins [22, 23].
Long periods of fasting, low calorie diet and a diet

high in fat and energy increase plasma free fatty acid
concentrations and levels of ANGPTL4, most probably
by activation of PPARs in liver and adipose tissue [24,
25]. ANGPTL4 is abundantly expressed in the liver, pla-
centa and adipose tissues [26]. T266M (rs1044250) and
E40K(rs116843064) are two variants of the ANGPTL4
gene [21]. E40K is a fairly rare variant that is found in
about 3% of the population of European ancestry [27]
and is associated with lower serum LDL-cholesterol and
triglyceride and higher HDL-cholesterol [27, 28].
However, other reports have suggested that the serum

ANGPTL4 is positively associated with serum triglycer-
ides in individuals with MetS [29]. These variants are
also associated with CVD. Abid et al. found that in CAD
subjects the GA genotype for rs116843064 polymorph-
ism there was an increased CVD risk [21]. It has also
been reported that serum ANGPTL4 is lower in subjects
with type 2 diabetes. However no associations were
found in subjects with MetS or obesity [30], although
subjects with MetS have higher levels of plasma
ANGPTL4 [31]. A study in knock-out mice observed
that Angptl4-deficient mice have altered lipid metabol-
ism and also smaller atherosclerotic lesions [32]. The
primary aim of this current study was to evaluate the
association between the rs116843064 gene variant of the
ANGPTL4 gene and the presence of MetS.

Methods
Study population
The study population comprised 260 with, and 557 indi-
viduals without MetS, who were recruited from the
Mashhad Stroke and Heart Atherosclerosis Disorder
(MASHAD) cohort study. They were recruited through
a cluster-randomized-recruitment in 2007–2008, as de-
scribed previously [33, 34]. MetS was defined according
to the International-Diabetes-Federation (IDF) criteria
including waist circumference > 94 cm in men and > 80
cm in women along with at least two of the other
criteria for MetS, such as fasting serum triglycerides>
150 mg/dl, HDL-C < 40 mg/dl in men or < 50 mg/dl in
women, BP > 130/85 mmHg and fasting glucose> 100
mg/dl. In the current study subjects with CAD, stroke
and peripheral arterial disease were excluded.
Informed written consent was obtained from all

individuals, and the study protocol was approved by the
Ethics Committee of the MUMS. All participants were
able to read and understand and were willing to provide
written, informed consent.
General entry and exclusion criteria for this study and

public specifications of the sample participants, includ-
ing marital status, occupational status, drug use and

biochemical measurements were obtained as previously
described (32–33).

Anthropometric and biochemical measurements
Anthropometric parameters containing weight (kg),
height (m), waist circumference (cm), hip circumference
(cm), waist/hip (cm), BMI (kg/m2), systolic blood pres-
sure (mmHg) and diastolic blood pressure (mm Hg)
were determined for all participant as previously de-
scribed [34]. To evaluated BMI body weight (kg) divided
by squared height in meters (m2) was used. Biochemical
parameters including fasted serum triglyceride(mg/dl),
cholesterol (mg/dl), HDL-C(mg/dl), fasting blood glu-
cose (mg/dl), serum Hs-CRP (mg/dl) and uric acid were
measured as explained previously [35].

Genotyping
Genomic DNA was extracted from peripheral blood using
a QIAamp-DNAMini-Kit (Qiagen, SanDiego, CA) and the
manufacturer’s protocol. Using the NanoDrop®-1000-De-
tector (NanoDrop-Technologies, Wilmington, USA) the
purity and concentration of DNAs were evaluated. The
genotyping of the ANGPTL4 rs116843064 polymorphism
was performed using Taqman®-probes-based assay. The
PCR reaction was performed in a total volume of 12.5 μl
through 10 ng DNA in TaqMan® Universal Master Mix
with particular primes and probes (Applied Biosystems
Foster City, CA). ABIPRISM tools with SDS-version 2.0
software has been used to examine the content of allelic
samples.

Statistical analyses
The analysis of the data was performed using SPSS 22
software (SPSS Inc., Chicago, IL). A Kolmogorove Smir-
nov test was untaked to determine the normality of the
data within groups. The genotype and allele frequencies
of the ANGPTL4 rs116843064 polymorphism were
determined for analysis for the Hardy–Weinberg equilib-
rium (HWE) through Pearson χ distribution. Kruskal-
Wallis and Mann-Whitney U tests, or ANOVA and t
tests were used to evaluate the differences between
groups. The relationship between the risk of MetS with
GG and GA genotypes, versus the AA genotype under
recessive genetic model, were investigated through vari-
ous genetic models. MetS risk was expressed as the odds
ratio (OR) and its corresponding 95% confidence inter-
val (CI). The analyses were two-sided and statistical
significance was set at P < .05.

Results
General characteristic of subjects
Anthropometrics and biochemical characteristic of MetS
and healthy subjects are presented in Table 1. The
mean age of the individuals with MetS and non-MetS
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subjects were 49.53 ± 7.64 and 49.59 ± 8.54, respect-
ively. BMI, waist circumference, weight, hip circum-
ference, waist/hip, systolic blood pressure and
diastolic blood pressure, fasting serum triglycerides,
uric acid and Hs-CRP were higher than in the control
group (p < 0.05). Also fasting blood glucose was
higher in MetS patients but there was no significant
difference between the two groups.

However height, serum cholesterol, HDL and LDL
were higher in the non-MetS group (Table 1).

Clinical characteristic of populations
We have found that the genotype frequency of GG, GA
and AA were 96.9, 2.7 and 0.4% in MetS group and 78.8,
20.8, 0.4%, respectively in those without MetS (Table 2).
The distribution of genotypes and allele frequencies of
ANGPTL4 gene rs116843064 polymorphism, were in
Hardy-Weinberg equilibrium (HWE) (P < 0.05).

Association of the genetic variant with MetS
The distribution of the ANGPTL4 gene rs116843064
polymorphism genotypes were investigated in genetic
various models (Table 2). These data indicated that
the GA genotype of the rs116843064 polymorphism
in Codominant model was associated with a lower
risk for MetS (e.g., OR in Codominant genetic model:
0.14, 95% CI: (0.06–0.33), p < 0.0001). Also subjects
with an A allele had a higher risk for MetS (OR:
6.72, 95% CI: (3.05–14.82), p < 0.0001).

Association between rs116843064 polymorphism and
lipid profile
The relationship between the ANGPTL4 gene
rs116843064 polymorphism and serum fasted TG and
HDL level in total population and non-MetS group is
presented in Table 3. This shows that the carriers of GA
genotype had a higher level of serum HDL and lower
serum TG, compared with the GG homozygotes, with
the wild genotype (p < 0.0001).

Discussion
Multiple studies have revealed that metabolic syndrome
is a risk factor for diabetes mellitus, hypertension,
pro-inflammatory state, central adiposity, dyslipidemia
and high concentrations of ANGPTL4 [18, 36]. A large
number of studies have shown that the E40K variant
within the ANGPTL4 gene is linked with significant
differences in serum triglycerides and HDL cholesterol.

Table 1 Anthropometrics and biochemical data of MetS and
healthy group

Non-MetS MetS

Sex

Woman (%) 340(61.0%) 140(53.8%)

Men (%) 217(39.0%) 120(46.2%)

Total (%) 557(100%) 260(100%)*

Age (y)a 49.59 ± 8.54 49.53 ± 7.64

BMI (kg/m2) 27.55 ± 4.62 29.57 ± 4.12*

Waist circumference (cm) 94.84 ± 11.57 100.42 ± 9.01*

Height (m) 1.60 ± 0.09 1.62 ± 0.09

Weight (kg) 70.84 ± 12.61 78.17 ± 11.15*

Hip circumference (cm) 102.72 ± 9.23 106.30 ± 8.49*

Waist/hip (cm) 0.92 ± 0.08 0.94 ± 0.07*

SBP (mmHg) 123.16 ± 20.27 127.75 ± 19.45*

DBP (mm Hg) 79.09 ± 11.43 82.15 ± 11.08*

Serum Triglyceride(mg/dl)b 116.00 (91) 189(103) *

Serum Cholesterol (mg/dl) 191.05 ± 40.32 186.78 ± 41.27

FBG (mg/dl) 96.76 ± 43.04 102.51 ± 48.94

HDL(mg/dl) 42.64 ± 10.90 35.71 ± 10.59*

LDL(mg/dl) 115.65 ± 34.17 101.35 ± 36.91*

Uric acid 4.59 ± 1.44 5.08 ± 1.57*

Hs-CRP (mg/dl)b 1.61 (2.25) 1.78(2.80) *

aData are presented as mean SD
bData for serum Triglyceride, Hscrp are reported as med (IQR)
Abbreviation: BMI body mass index, SBP Systolic blood pressure, DBP Diastolic
blood pressure, TG triglyceride, HDL high density lipoprotein, HsCRP high
sensitive CRP
* = P 0.05>

Table 2 Distribution of genotypes and allele frequencies and their association with metabolic syndrome

SNP Total Non-MetS MetS Odds ratio(95% CI) P Value

Genetic models 817(100%) 557(100%) 260(100%)

Codominant GG 691(84.6%) 439(78.8%) 252(96.9%) Ref Cat 1

AG 123(15.1%) 116(20.8%) 7(2.7%) 0.10(0.04–0.22) < 0.0001

AA 3(0.4%) 2(0.4%) 1(0.4%) 0.87 (0.07–9.65) 0.99

HWE < 0.05 < 0.05 < 0.05

A 68(5.5%) 61(8.4%) 7(1.3%) 6.72(3.05–14.82) < 0.0001

G 1178(94.5%) 665(91.6%) 513(98.7%) Ref Cat 1

Logistic regression analysis adjusted for age and sex
Ref Cat reference category, CI confidence interval, HWE Hardy–Weinberg equilibrium
Logistic regression analysis was used to calculate association of polymorphisms and metabolic syndrome
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This relationship can be explained at least in part by its
function in the inhibition the activity of lipoprotein
lipase and stimulates adipose tissue lipolysis and relates
to dyslipidemia [23, 24]. A meta-analysis comprising
49,549 subjects has shown that the rs116843064 SNP is
a missense variant in ANGPTL4 gene that is involved in
determining triglyceride concentrations [37]. Genotypes
of SNPs in 1654 individuals of Chinese Han population
verified the potential function of the ANGPTL4 variants
on circulating lipid levels and diseases that are related to
atherosclerosis [38].
Free fatty acids through the lipid-sensing peroxisome

proliferator-activated receptors (PPARs) play a main role
in the expression regulation of ANGPTL4 [18]. On the
other hand a significant correlation is found between the
ANGPTL4 concentration and FFA levels in subjects with
type 2 diabetes mellitus (T2DM) compared to healthy
individuals [39].
Sadeghabadi et al., have reported an association of plasma

levels of ANGPTL4 and expression of PPARγ gene with
metabolic characteristics in obese children and adolescents.
Although both of PPARγ gene expression and levels of
ANGPTL4 were decreased in individuals with obesity, sig-
nificant association were not found in obese children with
insulin resistance as compared to those without insulin re-
sistance and also in obese children with or without meta-
bolic syndrome [40]. Although the association of
ANGPTL4 variant and risk of MetS has been inconsistent,
the results of some recent investigations are in line with the
findings of the current study. The results of the current
study indicated that carriers of the A allele (AA or GA ge-
notypes) of the ANGPTL4 gene have higher levels of HDL
but lower TG levels, compared to those with GG homozy-
gote genotype. Moreover the GA genotype was associated
with reduced risk of MetS. Some other studies showed that
the E40K variant was linked with lower serum TG and
higher HDL-cholesterol [27, 28]. The Atherosclerosis Risk

in Communities study and the Copenhagen City Heart
Study demonstrated that the E40K variant was associated
with a lower levels of TG and LDL cholesterol but higher
levels of HDL cholesterol [28]. In line with these findings,
Dewey et al. showed that carriers of the E40K and other in-
activating mutations in ANGPTL4 had lower levels of tri-
glycerides and also a lower risk of coronary artery disease
compared with non-carriers. The authors of this study
found that the presence of the E40K variant was associated
with a 19% lower risk of coronary artery disease than for
E40 homozygotes [41]. Experiments on the regulation of
Angptl4 expression within arterial macrophages have
shown that formation of foam cells is suppressed by
Angptl4 expression and leads to a lower risk of atheroscler-
osis. Moreover, overexpression of Angptl4 may play a cru-
cial role in lipid metabolism [42]. Abid et al. speculated that
the variants of ANGPTL4 may be associated with the re-
duced fasting triglyceride levels and consequently these var-
iants may reduce the risk of cardiovascular disease [21]. A
prospective study conducted by Folsom and colleagues
revealed that individuals with E40K variant possess reduced
genetic risk for coronary heart disease [43]. Stejskal et al.,
demonstrated that in individuals with MetS the concentra-
tion of serum ANGPTL4 was directly associated with
serum TG [29]. Smart-Halajko et al., showed an inverse as-
sociation between serum ANGPTL4 and HDL-cholesterol
and could not find any significant associations between cor-
onary heart disease and the levels of serum ANGPTL4 [44].
An investigation of the association between ANGPTL4
levels and metabolic parameters in a population based
study, concentrations of ANGPTL4 were found to be posi-
tively related to the metabolic syndrome, and plasma
ANGPTL4 concentrations were inversely related to LDL-C
and HDL-C, but positively associated with serum triglycer-
ides [45]. Other study showed that polymorphism within
the ANGPTL4 gene is not related to metabolic compo-
nents in white subjects [46].

Table 3 Association between SNP and serum TG and HDL level

Genetic model HDL serum level (mg/ml) P.value TG serum level (mg/ml) P.value

Total population AA 28.50 ± 4.95 0.36 157.50(125–190) 0.75

AG 44.67 ± 12.07 < 0.0001 108(81–132.50) < 0.0001

GG 39.36 ± 10.89 Ref.1 156(104–226) Ref.1

MetS AA 34.30 ± − 0.60 468(.) 0.03

AG 33.10 ± 11.36 0.38 174(131–345) 0.86

GG 35.78 ± 10.61 Ref.1 189(154–254) Ref.1

Non-MetS AA 28.50 ± 4.94 0.17 157.50(125-.) 0.58

AG 45.71 ± 11.28 0.009 100(71–125.25) 0.005

GG 41.88 ± 10.64 Ref.1 122.50(88–184.75) Ref.1

Ref cat: reference category, General linear model was used to calculate association of genotype and lipid profile serum level. Mean ± SD and median(IQR) was
used to report HDL and TG levels
Logistic regression analysis Adjusted for age and sex
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Miida et al. observed that in individuals with MetS,
serum ANGPTL4 was directly associated with serum tri-
glycerides [31]. Muendlein et al., have shown that the
variants of ANGPTL4 and the plasma levels of
ANGPTL4 may have a potential role in the prediction of
cardiovascular events and also the characteristics of the
MetS were linked with the levels of serum ANGPTL4
[26]. However, Dlouha et al., did not find a relationship
between the rs116843064 ANGPTL4 gene polymorph-
ism and risk of acute coronary syndrome in a Czech
population [39]. The results of a cohort study by Staiger
et al., demonstrated that fasting FFA and adipose tissue
lipolysis were directly associated with plasma ANGPTL4
[36]. The results of various studies indicate that plasma
levels of ANGPTL4 were higher in MetS and T2DM
compared to the control group [18, 30].

Conclusion
In summary our results supports a significant relation-
ship between the rs116843064 genetic polymorphism
within the ANGPTL4 gene with the presence of MetS
and lipid profile.
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