Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content
Figure 4 | BMC Medical Genetics

Figure 4

From: Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle

Figure 4

Methylmalonic acid concentration by tissue type over time. (A) MMA concentrations expressed as nmol per gram of tissue. The values are averages from prenatal [embryonic day 19] (N = 3), neonatal [8–12 hour] (N = 3), and metabolic crisis [20–24 hour] (N = 2) mutant animals. Values for age-matched control littermates (N = 2) for each time point are not depicted on this graph but were used to plot the fold change, depicted in additional file 4. The error bars surround the standard deviation for the prenatal time point and the range observed at the stage of metabolic crisis. p-values for the mutant versus age matched controls were <0.01 for all tissues. An asterisk * designates a significant p-value. In the mutants, the MMA content of the liver at 24 hours was significantly greater than skeletal muscle (p = 0.002 at 8 hours, p = 0.05 at 24 hours), brain (p = 0.002 at 8 hours, p = 0.0016 at 24 hours), or kidney (p = 0.0023 at 8 hours, p = 0.0072 at 24 hours). However, only the difference between the liver samples at the 24-hour time point and other tissues at the 8 and 24-hour time points were significant with a p-value less than 0.05.

Back to article page